Gelatin-EiO2 (Ei = Si/Ti/Zr) Based Mesoporous Nano-hybrids: Synthesis and Characterization

Gelatin-EiO2 (Ei = Si/Ti/Zr) Based Mesoporous Nano-hybrids: Synthesis and Characterization

Author: Samjeet Singh Thakur Journal of Materials & Metallurgical Engineering-STM Journals Issn: 2231-3818 Date: 2025-05-22 12:00 Volume: 14 Issue: 03 Keyword: Nano-hybrid, hybrid material, gelatin, silica, titania, zirconia, mesoporous, characterization Full Text PDF Submit Manuscript Journals

Abstract

The hybrid materials are mostly prepared by combining the organic or bio-organic part to the inorganic building blocks and are used in many applications. Gelatin as one of the main component of hybrid materials is an attractive option. It is biodegradable; biocompatible; non-toxic; bio-adhesive and contains many active groups such as –NH2, –COOH, in the biopolymer backbone makes these hybrid materials important in various technological applications. The synthesis of a series of gelatin-based nano-hybrid mesoporous materials was carried out using gelatin as the bio-polymeric backbone, silica, titania or zirconia; SDS as surfactant for o/w emulsion, TEOS as silylation or cross-linker material to obtain different hybrid materials for different applications. Hydrochloric acid (HCl) was used as catalyst, n-hexane as the solvent and sodium dodecyl-sulphate (SDS) as a surfactant for oil-water emulsification. Herein, sol‒gel technique was used to prepare the mesoporous Gelatin-EiO2 (Ei = Si/Ti/Zr) Based Mesoporous Nano-hybrids which are promising and efficient method. Thus, four kinds of different gelatin‒based hybrid materials: gelatin‒silica, modified gelatin‒silica, gelatin‒titania and gelatin‒zirconia based hybrid materials were synthesized. The effect of post-calcination on the properties of the as-synthesized hybrid materials was also studied and confirmed from various characterization techniques such as: elemental analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffraction studies (XRD), thermo-gravimetric analysis (TGA), energy dispersive X-ray (EDX) and Fourier transform infrared (FTIR) spectroscopy and BET surface area analysis. To sum up, the materials synthesized are nano-hybrids which are mesoporous as confirmed from the various characterization techniques like SEM-EDS, have high surface area and are good candidates for many frontline applications.

Keyword: Nano-hybrid, hybrid material, gelatin, silica, titania, zirconia, mesoporous, characterization

Refrences:

  1. Smitha, S.; Shajesh, P.; Mukundana, P.; Nair, T. D. R. and Warrier, K. G. K., Synthesis of Biocompatible Hydrophobic Silica–Gelatin Nano-Hybrid by Sol–Gel Process, Colloids Surf. B: Biointerfaces, 55, 38–43 (2007).
  2. Chujo, Y. and Saegusa, T., Organic Polymer Hybrids with Silica Gel Formed by Means of Sol-Gel Method, Polym. Sci., 100, 11–29 (1992).
  3. Sanchez, C.; Ribot, F. and Lebeau, B., Molecular Design of Hybrid Organic-Inorganic Nanocomposites SynthesizedviaSol-Gel Chemistry, J. Mater. Chem., 9, 35–44 (1999).
  4. Sanchez, C.; Soler-Illia, G. J. A. A.; Ribot, F.; Lalot, T.; Mayer, C. R. and Cabuil, V., Designed Hybrid Organic-Inorganic Nanocomposites from Functional NanobuildingBlocks, Mater., 13, 3061–3083 (2001).
  5. Sanchez, C.; Julian, B.; Belleville, P. and Popall, M., Applications of Hybrid Organic-Inorganic Nanocomposites, Mater. Chem., 15, 3559–3592 (2005).
  6. Chernev, G. E.; Borisova, B. V.; Kabaivanova, L. V. and Salvado, I. M., Silica Hybrid Biomaterials Containing Gelatin Synthesized by Sol-Gel Method, Eur. J. Chem., 8(4), 870–876 (2010)
  7. Nicole, L.; Rozes, L. and Sanchez, C., Integrative Approaches to Hybrid Multifunctional Materials: From Multidisciplinary Research to Applied Technologies, Mater., 22, 3208–3214 (2010).
  8. Zamboulis, A.; Moitra, N.; Moreau Joel, J. E.; Cattoen, X. and Man, M. W. C., Hybrid Materials: Versatile Matrices for Supporting Homogeneous Catalysts, Mater. Chem., 20, 9322–9338 (2010).
  9. Sanchez, C., Rozes, L.; Ribot, F.; Laberty-Robert, C.; Grosso, D.; Sassoye, C.; Boissiere, C. and Nicole, L., “Chimie douce”: A Land of Opportunities for the Designed Construction of Functional Inorganic and Hybrid Organic-Inorganic Nanomaterials, R. Chim., 13, 3–39 (2010).
  10. Gianotti, E.; Diaz, U.; Coluccia, S. and Corma, A., Hybrid Organic–Inorganic Catalytic Mesoporous Materials with Proton Sponges as Building Blocks, Chem. Chem. Phys., 13, 11702–11709 (2011).
  11. Warren, S. C.; Perkins, M. R.; Adams, A. M.; Kamperman, M.; Burns, A. A.; Arora, H.; Herz, E.; Suteewong, T.; Sai, H.; Li, Z.; Werner, J.; Song, J.; Werner-Zwanziger, U.; Zwanziger, J. W.; Grätzel, M.; DiSalvo Francis, J. and Wiesner, U., A Silica Sol–Gel Design Strategy for Nanostructured Metallic Materials, Nature Mater., 11, 460–467 (2012).
  12. Chen, Q.; Miyaji, F.; Kokubo, T. and Nakamura, T., Apatite Formation on PDMS-Modified CaO-SiO2-TiO2 Hybrids Prepared by Sol-Gel Process, Biomaterials, 20(12), 1127–1132 (1999).
  13. Ren, L.; Tsuru, K.; Hayakawa, S. and Osaka, A., Synthesis and Characterization of Gelatin-Siloxane Hybrids Derived through Sol-Gel Procedure, Sol-Gel Sci.Technol., 21, 115–121 (2001)
  14. Schubert, U., “Silica-Based and Transition Metal-Based Inorganic-Organic Hybrid Materials – A Comparison,” Sol-Gel Sci.Technol., 26, 47–55 (2003).
  15.    15. Diaz, U.; Garcia, T.; Velty, A. and Corma, A., Hybrid Organic–Inorganic Catalytic Porous Materials Synthesized at Neutral pH in Absence of Structural Directing Agents, Mater. Chem., 19, 5970–5979 (2009).
  16. Retuert, J.; Martinez, Y.; Quijada, R. and Yazdani-Pedram, M., Highly Porous Silica Networks Derived from Gelatin/Siloxane Hybrids Prepared Starting from Sodium Metasilicate, Non-Cryst. Solids, 347(1–3), 273–278 (2004).
  17. Ferreira, R. A. S.; André, P. S. And Carlos, L. D., “Organic–Inorganic Hybrid Materials towards Passive and Active Architectures for the Next Generation of Optical Networks,” Mater., 32(11), 1397–1409 (2010).
  18. Lei, B.; Shin, K. H; Noh, D. Y.; Jo, I. H.; Koh, Y. H.; Choib, W. Y. and Kimb, H. E., Nanofibrous Gelatin–Silica Hybrid Scaffolds Mimicking the Native Extracellular Matrix (ECM) Using Thermally Induced Phase Separation, Mater. Chem., 22, 14133–14140 (2012)
  19. Reetz, M. T., Zonta, A., Simpelkamp, J., Efficient Immobilization of Lipases by Entrapment in Hydrophobic Sol–Gel Materials, Bioeng.,49(5), 527–534 (1996).
  20. Schuleit, M. and Luis, P. L., Enzyme Immobilization in Silica-Hardened Organogels, Biotechnol.Bioeng., 72(2), 249–253 (2001).
  21. Soares, M. F.; Santana, M. H. A.; Zanin, G. M. and Castro, H. F. D.,Covalent Coupling Method for Lipase Immobilization on Controlled Pore Silica in the Presence of Nonenzymatic Proteins,Biotechnol. Prog., 19(3), 803–807 (2003).
  22. Shchipunov, Y. A.; Karpenko, T. Y.; Bakunina, I. Y.; Burtseva, Y. V. and Zvyagintseva, T. N., A New Precursor for the Immobilization of Enzymes Inside Sol–Gel-Derived Hybrid Silica Nanocomposites Containing Polysaccharides, Biochem. Biophys. Methods, 58, 25–38 (2004).
  23. Macario, A.; Moliner, M.; Corma, A. and Giordano, G., Increasing Stability and Productivity of Lipase Enzyme by Encapsulation in a Porous Organic-Inorganic System, Microporous Mesoporous Mater., 118, 334−340 (2009).
  24. Dragomirescu, M.; Vintila, T. and Preda, G., Immobilized Microbial Cellulases in Organic-Inorganic Hybrid Materials, Sci. and Biotechnol., 44 (1), 380–382 (2011).
  25. Ren, L.; Tsuru, K.; Hayakawa, S. and Osaka, A., Novel Approach to Fabricate Porous Gelatin–Siloxane Hybrids for Bone Tissue Engineering, Biomaterials 23, 4765–4773 (2002).
  26. Vallet-Regí, M.; Balas, F. and Arcos, D., Mesoporous Materials for Drug Delivery, Chem. Int. Ed., 46, 7548–7558 (2007).
  27. Mahony, O.; Tsigkou, O.; Ionescu, C.; Minelli, C.; Ling, L.; Hanly, R.; Smith, M. E.; Stevens, M. M. and Jones, J. R., Silica-Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration, Funct. Mater. 20, 3835–3845 (2010).
  28. Yanes, R. E. and Tamanoi, F., Development of Mesoporous Silica Nanomaterials as a Vehicle for Anticancer Drug Delivery, Deliv., 3(3), 389–404 (2012).
  29. Xu, J. H.; Gao, F. P.; Li, L. L.; Ma, H. L.; Fan Y. S.; Liu, W.; Guo S. S.; Zhao X. Z. and Wang, H., Gelatin–Mesoporous Silica Nanoparticles as Matrix Metalloproteinases-Degradable Drug Delivery System in vivo, Microporous Mesoporous Mater., 182(1), 165–172 (2013).
  30. Hu, Q.; Li, J.; Qiao, S.; Hao, Z.; Tian, H.; Ma, C. and He, C., Synthesis and Hydrophobic Adsorption Properties of Microporous/Mesoporous Hybrid Materials, J. Hazard. Mater., 164, 1205–1212 (2009).
  31. Qiu, J.; Wang, Z.; Li, H.; Xu, L.; Peng, J.; Zhai, M.; Yang, C.; Li, J. and Wei, G., Adsorption of Cr(VI) Using Silica-Based Adsorbent Prepared by Radiation-Induced Grafting, J. Hazard. Mater., 166, 270–276 (2009).
  32. Venditti, F.; Cuomo, F.; Ceglie, A.; Ambrosone, L. and Lopez, F., Effects of Sulphate Ions and Slightly Acidic pH Conditions on Cr(VI) Adsorptions onto Silica-Gelatin Composite, J. Hazard. Mater., 173, 552–557 (2010).
  33. Jin, X.; Yu, C.; Li, Y.; Qi, Y.; Yang, L.; Zhao, G. and Hu, H., Preparation of Novel Nano-Adsorbent Based on Organic–Inorganic Hybrid and Their Adsorption for Heavy Metals and Organic Pollutants Presented in Water Environment, J. Hazard. Mater., 186, 1672–1680 (2011).
  34. Jin, X.; Li, Y.; Yu, C.; Ma, Y.; Yang, L. and Hu, H., Synthesis of Novel Inorganic–Organic Hybrid Materials for Simultaneous Adsorption of Metal Ions and Organic Molecules in Aqueous Solution,J. Hazard. Mater., 198, 247–256 (2011).
  35. Zheng, Y.; Shengyang, T.; Jinxiang, Y. and Guangtao, L., Mesoporous Silicas Functionalized with a High Density of Carboxylate Groups as Efficient Absorbents for The Removal of Basic Dyestuffs, Mater. Chem., 16, 2347–2353 (2006).
  36. Arenas, L. T.; Gay, D. S. F.; Moro, C. C.; Dias, S. L. P.; Azambuja, D. S.; Costa, T. M. H.; Benvenutti, E. V. and Gushikem, Y., Brilliant Yellow Dye Immobilized On Silica and Silica/Titania Based Hybrid Xerogels Containing Bridged Positively Charged 1, 4-Diazoniabicyclo [2.2.2] Octane: Preparation, Characterization and Electrochemical Properties Study, Microporous Mesoporous Mater., 112, 273–283 (2008).
  37. Lee, K. E.; Morad, N.; Teng, T. T. and Poh, B. T., Effects of Different Conditions on the Removal of Dye from Reactive Dye Wastewater Using Inorganic-Organic Composite Polymer, IJESD, 3(1), 1–4 (2012).
  38. Wang, L.,Wu, X-L.,Xu, W-H., Huang, X-J., Liu, J-H and Xu, A-W. Stable Organic−Inorganic Hybrid of Polyaniline/α-Zirconium Phosphate for Efficient Removal of Organic Pollutants in Water Environment, ACS Appl. Mater. Interfaces, 4, 2686−2692 (2012).
  39. Moriones, P.; Rios, X.; Echeverria, J. C.; Garrido, J. J.; Pires, J. and Pinto, M., Hybrid Organic–Inorganic Phenyl Stationary Phases for the Gas Separation of Organic Binary Mixtures, Colloids Surf. A,389 (1‒3), 69−75 (2011).
  40. Guo, W.; Luo, G. S. and Wang, Y. J., A New Emulsion Method to Synthesize Well-Defined Mesoporous Particles, Colloid Interface Sci.271, 400‒406 (2004).
  41. Thakur, S.S. and Chauhan, G. S., Gelatin–Silica-Based Hybrid Materials as Efficient Candidates for Removal of Chromium(Vi) from Aqueous Solutions. Eng. Chem. Res.53(12), 12, 4838–4849 (2014). https://doi.org/10.1021/ie401997g
  42. Thakur, S.S.; Kumar, A. and Chauhan, G. S., Cellulase immobilization onto zirconia-gelatin-based mesoporous hybrid matrix for efficient cellulose hydrolysis. TCR, 10(1), 45, (2018). ISSN0975-0304.
  43. Thakur, S.S., Chauhan, G.S. (2018). Titania–Gelatin-Based Nanohybrids: A Versatile Material for Removal of Organic Dyes (Congo Red, Malachite Green, Crystal Violet and Methylene Blue) from Aqueous Solution. In: Gupta, B., Ghosh, A., Suzuki, A., Rattan, S. (eds) Advances in Polymer Sciences and Technology. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2568-7_14.
  44. Sabataityte, J.; Oja, I.; Lenzman, F.; Volobujeva, O. and Krunks, A., “Characterization of Nanoporous TiO2 Films Prepared by Sol-Gel Method,” R. Chim., 9(5-6), 708‒712 (2006).
  45. Birshtein, V. Y. andTulchinskii, V.M.,A Study of Gelatin by IR Spectroscopy, Nat. Compd., 18(6), 697−700 (1982).
  46. Castro, Y.; Aparicio, M.; Moreno, R. and Duran, A., Silica-Zirconia Sol–Gel Coatings Obtained by Different Synthesis Routes, Sol-Gel Sci.Technol., 35, 41–50 (2005).
  47. Olejniczaka, M. L. Z.; Cholewa-Kowalskab, K.; Wojtachb, K.; Rokitab, M. and Mozgawab, W., 29Si MAS NMR and FTIR Study of Inorganic‒Organic Hybrid Gels, Mol. Struct., 744, 465‒471 (2005).
  48. Chauhan, G. S.; Kumar, S.; Kumari, A. and Sharma, R., Study on the Synthesis, Characterization, and Sorption of Some Metal Ions on Gelatin and Acrylamide-Based Hydrogels, Appl. Polym. Sci., 90, 3856‒3871 (2003).
  49. Smitha, S.; Mukundan, P.; Pillai, P. K. and Warrier, K. G. K., Silica–Gelatin Bio-Hybrid and Transparent Nano-Coatings through Sol-Gel Technique, Chem. Phys., 103(2–3), 318–322 (2007).
  50. Spindloe, C., The Production of Multi-Element Opacity Targets for X-Ray Laser Experiments, Target Fabrication: Laser Science and Development, Central Laser Facility Annual Report 2006/2007, pp 256‒257.

Tags

You may also like

>