Comparative study of internal dosimetry methodology and software toestimate the absorbed dose forpersonalized radionuclide therapy

Comparative study of internal dosimetry methodology and software toestimate the absorbed dose forpersonalized radionuclide therapy

Author: Madhulika Research & Reviews: A Journal of Medical Science and Technology-STM Journals Issn: 2319-3417 Date: 2026-01-19 12:24 Volume: 10 Issue: 03 Keyword: Radiopharmaceutical Therapy (RPT), Personalized Radionuclide Therapy, Dosimetry software, Dosimetry methodology Full Text PDF Submit Manuscript Journals

Abstract

Purpose: The aim of this review article is to collate the detailed insight of different dosimetry methodology and non-commercial /commercial dosimetry software tools, along with clinical study explored by specific authors, published in recent peer-review journals. The present work is segmented in three sections: i) Literature review of various dosimetry methodologies to evaluate absorbed dose in personalized radionuclide/ radiopharmaceutical therapy. ii) Technical as well as comparative information related to commercial dosimetry software tools used in radiopharmaceutical therapy (RPT). iii) Clinical review to compile the data of patient study for patient-specific dosimetry in internal radionuclide therapy.

Methods: Our study is based on latest available articles, to compile the information of upcoming dataset of newer methods to calculate absorbed dose, quantitative comparison of non-commercial / commercially available dosimetry software tools and recent study on patients who were clinically studied for targeted radionuclide therapy. To integrate the software based dosimetry tools in clinical routine; our department is planning to purchase few dosimetry software, henceforth a detailed survey is performed for recent articles published between 2018-2021 and other articles related to our work.

Results: The analysis of current review is categorized in three sections: i) Literature review for different calculation techniques for assessment of personalized internal radionuclide therapy, detail information of traditional and modern methods to calculate absorbed dose were gathered. With new updated dosimetry evaluation methods; more accurate, personalized and fast calculations are possible in clinical practice. ii) Technical review on different non-commercial / commercial software tools used in clinical routine, gives the first hand information of advantages and limitations of different software. The comparative study of different software is a step to achieve successes in performing the clinical practice for patient specific internal radionuclide therapy in our department. iii) Clinical review of the data, of patient study performed by various authors selected in our work gives the guideline to set the protocol to perform radionuclide therapy in clinical routine.

Conclusions: The objective of the present review is to compare the results generated by different non-commercial / commercial dosimetry software toolkits. The objectives of this work is not to provide the ranking or to recommend a given dosimetry methodology or software tools. However, encouraging results obtained in terms of absorbed doses were generally consistent between the different software toolkits. In absorbed dose calculations along with the harmonization process of different dosimetry methods and software tools, there are critical steps that should be deeply investigated on real cases based on voxel level or organ level calculations. The study provides the information of the most adequate computation technique and the methodology for the clinical or research application. Finally the outcome of the present study includes classification of various techniques mostly practiced in clinical routine, ranging from the less advance to personalized and the most accurate.

Keyword: Radiopharmaceutical Therapy (RPT), Personalized Radionuclide Therapy, Dosimetry software, Dosimetry methodology

Refrences:

1. Li T, Ao EC, Lambert B, Brans B, Vandenberghe S, Mok GS. Quantitative imaging for targeted
radionuclide therapy dosimetry-technical review. Theranostics. 2017;7(18): 4551.
2. Hamburg MA, Collins FS. The path to personalized medicine. New England Journal of Medicine.
2010;363(4):301-304.
3. Ljungberg M, Sjögreen GK. Personalized dosimetry for radionuclide therapy using molecular
imaging tools. Biomedicines. 2016; 4(4): 25.
4. Bolch WE, Bouchet LG, Robertson JS, et al. MIRD pamphlet No. 17: the dosimetry of
nonuniform activity distributions-radionuclide S values at the voxel level. Medical Internal
Radiation Dose Committee. J Nucl Med.1999; 40: 11S-36S.
5. Besemer AE, Yang YM, Grudzinski JJ, Hall LT, Bednarz BP. Development and validation of
RAPID: a patient-specific Monte Carlo three-dimensional internal dosimetry platform. Cancer
Biother Radiopharm. 2018; 33: 155-65.
6. Ljungberg M, Gleisner KS. 3-D image-based dosimetry in radionuclide therapy. IEEE Trans
Radiat Plasma Med Sci. 2018; 2: 527-40.
7. Marquis H, Deidda D, Gillman A. Theranostic SPECT reconstruction for improved resolution:
application to radionuclide therapy dosimetry. EJNMMI physics. 2021; 8(1): 1-7.
8. Sarrut D, Bala M, Bardies M, et al. Advanced Monte Carlo simulations of emission tomography
imaging systems with GATE. Physics in Medicine & Biology. 2021.
9. Giammarile F, Muylle K, Delgado Bolton R, Kunikowska J, Haberkorn U, Oyen W. Dosimetry in
clinical radionuclide therapy: the devil is in the detail. Eur J Nucl Med Mol Imaging. 2017;
44(12): 1–3.
10. Shiri I, Arabi H, Geramifar P, et al. Deep-JASC: joint attenuation and scatter correction in wholebody 18F-FDG PET using a deep residual network. European journal of nuclear medicine and
molecular imaging. 2020; 47: 2533-2548.
11. Xiang H, Lim H, Fessler JA, Dewaraja YK. A deep neural network for fast and accurate scatter
estimation in quantitative SPECT/CT under challenging scatter conditions. European journal of
nuclear medicine and molecular imaging. 2020; 1-2.
12. Dong X, Lei Y, Wang T, et al. Deep learning-based attenuation correction in the absence of
structural information for whole-body PET imaging. Phys Med Biol. 2020; 65: 055011.
13. Sanaat A, Arabi H, Mainta I, Garibotto V, Zaidi H. Projection Space Implementation of Deep
Learning–Guided Low-Dose Brain PET Imaging Improves Performance over Implementation in
Image Space. Journal of Nuclear Medicine. 2020; 61(9): 1388-96.
14. Zaharchuk G. Next generation research applications for hybrid PET/MR and PET/CT imaging
using deep learning. Eur J Nucl Med Mol Imaging. 2019; 46: 2700–7.
15. Shiri I, AmirMozafari Sabet K, Arabi H, et al. Standard SPECT myocardial perfusion estimation
from half-time acquisitions using deep convolutional residual neural networks. J Nucl Cardiol.
2020; 1-9.
16. Xie T, Zaidi H. Estimation of the radiation dose in pregnancy: an automated patient-specific
model using convolutional neural networks. Eur Radiol. 2019; 29: 6805–15.
17. Seo H, Badiei KhuzaniM, Vasudevan V, et al. Machine learning techniques for biomedical image
segmentation: an overview of technical aspects and introduction to state-of-art applications. Med
Phys. 2020; 47: e148–e67.
18. Yonekura Y, Mattsson S, Flux G, et al. ICRP Publication 140: Radiological Protection in Therapy
with Radiopharmaceuticals. Ann ICRP. 2019; 48(1): 5–95.
19. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 Trial of 177Lu-Dotatate for Midgut
Neuroendocrine Tumors. N Engl J Med. 2017; 376(2): 125–135.
20. Stabin MG, Madsen MT, Zaidi H. Personalized dosimetry is a must for appropriate molecular
radiotherapy. Medical physics, 2019; 46(11): 4713-4716.
21. Bodei L, Mueller-Brand J, Pavel ME, et al. The joint IAEA, EANM, and SNMMI practical
guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J
Nucl Med Mol Imaging. 2013; 40(5): 800–16.
22. Sundlöv A, Sjögreen-Gleisner K, Svensson J, et al. Individualised 177Lu-DOTATATE treatment
of neuroendocrine tumours based on kidney dosimetry. Eur J Nucl Med Mol Imaging. 2017;
44:1480–1489.
23. Gosewisch A, Delker A, Tattenberg S, et al. Patient-specific image-based bone marrow Octreotate
inLu-177-DOTA, Try3-Octreotate and Lu-177-DKFZ-PSMA-617 therapy: investigation of a new
hybridimage approach. EJNMMI Res. 2018; 8: 76.
24. Garske-Román U, Sandström M, Fröss BK, et al. Prospective observational study of177LuDOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours
(NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. Eur
J Nucl MedMol Imaging. 2018; 45: 970–988.
25. Svensson J, Rydén T, Hagmarker L, Hemmingsson J, Wängberg B, Bernhardt P. A novel planar
image-based method for bone marrow dosimetry in 177Lu-DOTATATE treatment correlates with
haematological toxicity. EJNMMI Phys. 2016; 3: 21.
26. Sanders JC, Kuwert T, Hornegger J, Ritt P. Quantitative SPECT/CT imaging of 177Lu with In
vivo validation in patients undergoing peptide receptor radionuclide therapy. Mol Imaging
Biol.2015; 17: 585–593.
27. Hänscheid H, Lapa C, Buck AK, Lassmann M, Werner RA. Dose mapping after endoradiotherapy
with 177Lu-DOTATATE/-TOC by one single measurement after four days. J Nucl Med. 2018;
59: 75–81.
28. Bailey DL, Hennessy TM, Willowson KP, et al. In vivo quantification of 177Lu with planar
whole-body and SPECT/CT gamma camera imaging. EJNMMI Phys. 2015; 2: 20.
29. Xie T, Bolch WE, Lee C, Zaidi H. Pediatric radiation dosimetry for positron-emitting
radionuclides using anthropomorphic phantoms. Med Phys. 2013; 40: 102502.
Comparative Study of Dosimetry Methodology and Software Tools Madhulika Mehrotra
© STM Journals 2021. All Rights Reserved 24
30. Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment.
Health Phys. 2003; 85: 294–310.
31. Xiao Y, Roncali E, Hobbs R, et al. Toward Individualized Voxel-Level Dosimetry for
Radiopharmaceutical Therapy. International journal of radiation oncology, biology, physics.
2021; 109(4): 902-4.
32. Giap HB, Macey DJ, Bayouth JE, Boyer AL. Validation of a dose-point kernel convolution
technique for internal dosimetry. Phys Med Biol. 1995; 40: 365-81.
33. Liu A, Williams LE, Wong JY, Raubitschek AA. Monte Carlo-assisted voxel source kernel
method (MAVSK) for internal beta dosimetry. Nucl Med Biol. 1998; 25: 423-33.
34. Furhang EE, Chui CS, Sgouros G. A Monte Carlo approach to patient-specific dosimetry. Med
Phys. 1996; 23: 1523-9.
35. Sundlöv A, Gustafsson J, Brolin G, et al. Feasibility of simplifying renal dosimetry in 177Lu
peptide receptor radionuclide therapy. EJNMMI Phys [Internet]. 2018;5(1).
36. Marin G, Vanderlinden B, Karfis I, et al. A dosimetry procedure for organs-at-risk in 177Lu
peptide receptor radionuclide therapy of patients with neuroendocrine tumours. Phys Med. 2018;
56: 41–9.
37. Del Prete M, Arsenault F, Saighi N, et al. Accuracy and reproducibility of simplified QSPECT
dosimetry for personalized 177Lu-octreotate PRRT. EJNMMI Phys. 2018; 5(1): 25.
38. Grimes J, Uribe C, Celler A. JADA: a graphical user interface for comprehensive internal dose
assessment in nuclear medicine. Med Phys. 2013; 40(7): 072501.
39. Johnson TK, McClure D, McCourt S. MABDOSE II: Validation of a general purpose dose
estimation code. Med Phys. 1999; 26(7): 1396–403.
40. Kletting P, Schimmel S, Hänscheid H, et al. The NUKDOS software for treatment planning in
molecular radiotherapy. Z Für Med Phys. 2015; 25(3): 264–74.
41. Li T, Zhu L, Lu Z, Song N, Lin K-H, Mok GSP. BIGDOSE: software for 3D personalized
targeted radionuclide therapy dosimetry. Quant Imaging Med Surg. 2020;10(1):160–70.
42. Prideaux AR, Song H, Hobbs RF, et al. Three-dimensional radiobiologic dosimetry: Application
of radiobiologic modeling to patient-specific 3-dimensional imaging–based internal dosimetry. J
Nucl Med. 2007; 48: 1008-16.
43. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer
software for internal dose assessment in nuclear medicine. J Nucl Med. 2005; 46(6): 1023–7.
44. Stabin MG, Siegel JA. RADAR Dose Estimate Report: A Compendium of Radiopharmaceutical
Dose Estimates Based on OLINDA/EXM Version 2.0. J Nucl Med. 2018; 59(1): 154–160.
45. Grassi E, Fioroni F, Ferri V, et al. Quantitative comparison between the commercial software
STRATOS(®) by Philips and a homemade software for voxel-dosimetry in radiopeptide therapy.
Phys Med. 2015; 31(1): 72–9.
46. Marcatili S, Pettinato C, Daniels S, et al. Development and validation of RAYDOSE: a Geant4-
based application for molecular radiotherapy. Phys Med Biol. 2013; 58(8): 2491–508.
47. Kost SD, Dewaraja YK, Abramson RG, Stabin MG. VIDA: a voxel-based dosimetry method for
targeted radionuclide therapy using Geant4. Cancer Biother Radiopharm. 2015; 30: 16-26.
48. Hippeläinen ET, Tenhunen MJ, Maenpaa HO, Heikkonen JJ, Sohlberg AO. Dosimetry software
Hermes Internal Radiation Dosimetry: from quantitative image reconstruction to voxel-level
absorbed dose distribution. Nucl Med Commun. 2017; 38: 357-65.
49. PLANET® Dose [Software]. DOSIsoft SA. Available from:
https://www.dosisoft.com/products/planet-dose/
50. Gupta A, Lee MS, Kim JH, Lee DS, Lee JS. Preclinical Voxel-Based Dosimetry in Theranostics:
a Review. Nuclear medicine and molecular imaging, 2020; 54(2):86-97.
51. Bardiès M. Relevance and implementation of patient-specific dosimetry in targeted radionuclide
therapy. In BIO Web of Conferences. 2019; 14: 07001.
52. Sapienza MT, Willegaignon J. Radionuclide therapy: current status and prospects for internal
dosimetry in individualized therapeutic planning. Clinics, 2019; 74.
53. Ljungberg M, Gleisner KS. 3-D image-based dosimetry in radionuclide therapy. IEEE
Transactions on Radiation and Plasma Medical Sciences, 2018; 2(6): 527-540.
54. Okamoto S, Shiga T, Tamaki N. Clinical Perspectives of Theranostics. Molecules. 2021; 26(8):
2232.
55. Stabin MG. Fundamentals of nuclear medicine dosimetry. Springer Science & Business Media;
2008; 9–31.
56. Snyder WS, Ford MR, Warner GG, Watson SB. “S,” Absorbed Dose per Unit Cumulated Activity
for Selected Radionuclides and Organs. MIRD Pamphlet No 11. Soc Nucl Med. 1975.
57. Snyder WS, Ford MR, Warner GG. Estimates of Specific Absorbed Fractions for Photon Sources
Uniformly Distributed in Various Organs of a Heterogeneous Phantom. MIRD Pamphlet No. 5,
revised. Soc Nucl Med. 1978.
58. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: a generalized schema
for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med. 2009; 50: 477–
84.
59. Grimes J, Celler A. Comparison of internal dose estimates obtained using organ-level, voxel S
value, and Monte Carlo techniques. Med Phys. 2014; 41: 092501.
60. Siegel JA, Thomas SR, Stubbs JB, et al. MIRD pamphlet no. 16: techniques for quantitative
radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose
estimates. J Nucl Med. 1999; 40: 37S–61S.
61. Del PM, Buteau FA, Beauregard JM. Personalized 177Lu-octreotate peptide receptor radionuclide
therapy of neuroendocrine tumours: a simulation study. Eur J Nucl Med Mol Imaging. 2017; 44:
1490–500.
62. Jackson PA, Beauregard JM, Hofman MS, Kron T, Hogg A, Hicks RJ. An automated voxelized
dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging. Med
Phys. 2013; 40: 112503.
63. Bailey DL, Hennessy TM, Willowson KP, et al. In vivo quantification of 177Lu with planar
whole-body and SPECT/CT gamma camera imaging. EJNMMI Phys. 2015; 2: 20.
64. Dieudonné A, Hobbs RF, Bolch WE, Sgouros G, Gardin I. Fine-resolution voxel S values for
constructing absorbed dose distributions at variable voxel size. Journal of nuclear medicine. 2010;
51(10): 1600-7.
65. Loudos G, Tsougos I, Boukis S, et al. A radionuclide dosimetry toolkit based on material-specific
Monte Carlo dose kernels. Nucl Med Commun. 2009; 30: 504–12.
66. Dieudonné A, Hobbs RF, Lebtahi R, et al. Study of the impact of tissue density heterogeneities on
3-dimensional abdominal dosimetry: comparison between dose kernel convolution and direct
Monte Carlo methods. J Nucl Med. 2012; 54: 236–44.
67. Hippeläinen E, Tenhunen M, Sohlberg A. Fast voxel-level dosimetry for 177Lu labelled peptide
treatments. Phys Med Biol. 2015; 60: 6685–700.
68. Rogers DW. Low energy electron transport with EGS. Nucl. Instrum. Meth. Phys. Res. 1984;
227(3): 535-548.
69. Yoriyaz H, Stabin MG, dos Santos A. Monte Carlo MCNP-4B–based absorbed dose distribution
estimates for patient-specific dosimetry. Journal of Nuclear Medicine. 2001; 42(4): 662-9.
70. Sempau J, Acosta E, Baro J, Fernández-Varea JM, Salvat F. An algorithm for Monte Carlo
simulation of coupled electron-photon transport. Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms. 1997; 132(3): 377-90.
71. Ferrer L, Chouin N, Bitar A, Lisbona A, Bardiès M. Implementing dosimetry in GATE: Dosepoint kernel validation with GEANT4 4.8.1. Cancer biotherapy & radiopharmaceuticals. 2007;
22(1): 125-9.
72. Akhavanallaf A, Shiri I, Arabi H, Zaidi H. Whole-body voxel-based internal dosimetry using
deep learning. European Journal of Nuclear Medicine and Molecular Imaging. 2021; 48(3): 670-
82.
73. Papadimitroulas P, Erwin WD, Iliadou V, Kostou T, Loudos G, Kagadis GC. A personalized,
Monte Carlo-based method for internal dosimetric evaluation of radiopharmaceuticals in children.
Medical physics. 2018; 45(8): 3939-3949.
Comparative Study of Dosimetry Methodology and Software Tools Madhulika Mehrotra
© STM Journals 2021. All Rights Reserved 26
74. Grimes J, Celler A. Comparison of internal dose estimates obtained using organ-level, voxel S
value, and Monte Carlo techniques. Medical physics. 2014; 41(9): 092501.
75. Huizing DMV, Verheij M, Stokkel MPM. Dosimetry methods and clinical applications in peptide
receptor radionuclide therapy for neuroendocrine tumours: a literature review. EJNMMI research.
2018; 8(1): 1-11.
76. Finocchiaro D, Berenato S, Bertolini V, et al. Comparison of different calculation techniques for
absorbed dose assessment in patient specific peptide receptor radionuclide therapy. Plos one.
2020; 15(8): e0236466.
77. Mora-Ramirez E, Santoro L, Cassol E, et al. Comparison of commercial dosimetric software
platforms in patients treated with 177Lu-DOTATATE for peptide receptor radionuclide therapy.
Medical Physics. 2020; 47(9): 4602-4615.
78. GE Healthcare. Dosimetry Toolkit Package: Organ Dose Estimates for Radio-Isotope Therapy
Treatment Planning Purposes; 2011.
79. Huizing DM, Peters SM, Versleijen MW, et al. A head-to-head comparison between two
commercial software packages for hybrid dosimetry after peptide receptor radionuclide therapy.
EJNMMI physics. 2020; 7: 1-19.
80. Santoro L, Pitalot L, Trauchessec D, et al. Clinical implementation of PLANET® Dose for
dosimetric assessment after [177 Lu] Lu-DOTA-TATE: comparison with Dosimetry Toolkit®
and OLINDA/EXM® V1. 0. EJNMMI research. 2021; 11(1): 1-17.
81. The RADAR site [Internet]. Available from: http://www.doseinfo-radar.com/RADAROver.html
82. Stabin M, Farmer A. OLINDA/EXM 2.0: the new generation dosimetry modeling code. J
NuclMed. 2012; 53: 585.
83. Gardin I, Fdhila M, Desbordes P, Smadja J, Lebtahi R, Dieudonne A. Predictive value of
dosimetry indices for treatment response in liver cancer patients treated with yttrium 90
microspheres using a random forest algorithm.J Nucl Med. 2017; 58: 197.
84. Pasciak AS, Bourgeois AC, Bradley YC. A comparison of techniques for 90Y PET/CT imagebased dosimetry following radioembolization with resin microspheres. Front Oncol. 2014; 4: 1–
10.
85. Dieudonne A, Hobbs RF, Bolch WE, Sgouros G, Gardin I. Fine-resolution voxel S values for
constructing absorbed dose distributions at variable voxel size. J Nucl Med. 2010; 51: 1600–1607.
86. Dieudonne A, Hobbs RF, Lebtahi R, et al. Study of the impact of tissue density heterogeneities on
3-dimensional abdominal dosimetry: comparison between dose kernel convolution and direct
MonteCarlo methods. J Nucl Med. 2013; 54: 236–243.
87. MIM SurePlanTM MRT [Software]. MIM software Inc. Available from:
https://www.mimsoftware.com/resources/brochures
88. Sarrut D, Halty A, Badel JN, Ferrer L, Bardiès M. Voxel-based multimodel fitting method for
modeling time activity curves in SPECT images. Med Phys. 2017; 44: 6280–6288.
89. Mok G, Li T. High performance virtual CT for enhanced targeted radionuclide therapy dosimetry.
J Nucl Med. 2017; 58: 1303-3.
90. Mok GS, Dewaraja YK. Recent advances in voxel-based targeted radionuclide therapy dosimetry.
Quantitative Imaging in Medicine and Surgery. 2021; 11(2): 483.
91. Ljungberg M, Sjögreen-Gleisner K. The accuracy of absorbed dose estimates in tumours
determined by quantitative SPECT: a Monte Carlo study. Acta Oncol. 2011; 50: 981–9.
92. Lanconelli N, Pacilio M, Meo S, Lo BF, Di Dia A, Torres Aroche L, et al. A free database of
radionuclide voxel S values for the dosimetry of nonuniform activity distributions. Phys Med
Biol. 2012; 57: 517–33.
93. Lin H, Jing J, Cai J, Xu L. A voxel-dose algorithm of heterogeneous activity distribution for
Monte-Carlo simulation of radionuclide therapy dosimetry. Cancer Biother Radiopharm. 2012;
27: 344–52.
94. Sanchez-Garcia M, Gardin I, Lebtahi R, Dieudonné A. A new approach for dose calculation in
targeted radionuclide therapy (TRT) based on collapsed cone superposition: validation with 90Y.
Phys Med Biol. 2014; 59: 4769–84.
95. Jan S, Benoit D, Becheva E, et al. GATE V6: a major enhancement of the GATE simulation
platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011; 56: 881–901.
96. Papadimitroulas P, Loudos G, Nikiforidis GC, Kagadis GC. A dose point kernel database using
GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other
Monte Carlo codes. Med Phys. 2012; 39: 5238–5247.
97. Papadimitroulas P. Dosimetry applications in GATE Monte Carlo toolkit. Phys Med. 2017; 41:
136–140.
98. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P et al. Geant4: a simulation
toolkit. Nucl. Instrum. Methods. 2003; 506(3): 250–303.
99. Zaker N, Kotasidis F, Garibotto V, Zaidi H. Assessment of lesion detectability in dynamic wholebody PET imaging using compartmental and Patlak parametric mapping. Clin Nucl Med. 2020;
45: e221–e31.
100. Fahrni G, Karakatsanis N, Di Domenicantonio G, Garibotto V, Zaidi H. Does whole-body
Patlak 18F-FDG PET imaging improve lesion detectability in clinical oncology? Eur Radiol.
2019; 29: 4812–21.
101. Graves SA, Hobbs RF. Dosimetry for Optimized, Personalized Radiopharmaceutical Therapy.
In Seminars in Radiation Oncology 2021; 31(1): 37-4

>