A Comprehensive Review of Biodegradable Polymers in Sustainable Packaging Applications

Author: Neetu Saharana, Neeraj Wadhwa Research & Reviews : Journal of Food Science & Technology-STM Journals Issn: 2278-2249 (Online), 321-6468 (Print) Date: 2024-08-12 01:26 Volume: 13 Issue: 1 Keyworde: Bioplastic, packaging, starch, cellulose, sustainability Full Text PDF Submit Manuscript Journals

Abstract

Keyworde: Bioplastic, packaging, starch, cellulose, sustainability

Full Text PDF

Refrences:

1. Andrady A.L., Neal M.A. Applications and societal benefits of plastics, Philos Trans R Soc B: Biol
Sci. 2009; 364(1526): 1977–84p.
2. Ashok A., Mathew M., Rejeesh C.R. Innovative value chain development of modified starch for a
sustainable environment: a review, Int J Polym Sci Eng. 2016; 2(1): 20–32p
3. Thompson R.C., Swan S.H., Moore C.J., et al. Our plastic age, Philos Trans R Soc B: Biol Sci.
2009; 364: 1973–6p.
4. Flieger M., Kantorová M., Prell A., et al. Biodegradable plastics from renewable sources, Folia
Microbiol. 2003; 48(1): 27–44p
5. Weber C.J., Haugaard V., Festersen R., et al. Production and applications of bio based packaging
materials for the food industry, Food Addit Contamin. 2002; 19.
6. Atik İ.D., Özen B., Tıhmınlıoğlu F. Water vapour barrier performance of corn-zein coated
polypropylene (PP) packaging films, J Therm Anal Calorim. 2008; 94(3): 687–93p.
7. Brown W.E. Plastics in Food Packaging: Properties, Design and Fabrication. New York: Marcel
Dekker; 1992, 66–102p.
8. Satheesh Kumar M.N., Yaakob Z., Siddaramaiah, Biobased materials in food packaging
applications, In: Handbook of Bioplastics and Biocomposites EngineeringApplications. Srikanth
Pilla (Ed.), 121–59p.
9. Mensitieri G., Di Maio E., Buonocore G.G., et al. Processing and shelf life issues of selected food
packaging materials and structures from renewable resources, Trends Food Sci Technol. 2011;
22(2–3): 72–80p.
10. Siracusa, V., Rocculi, P., Romani, S., andDalla Rosa, M. (2008). Biodegradable polymers for food
packaging: A review. Trends in Food Science and Technology, 19(12), 634–643.
11. Jayasekara R, Harding I, Bowater I and Lonergan G (2005). Biodegradability of a selected range of
polymers and polymer blends and standard methods for assessment of biodegradation. Journal of
Polymer and Environment, 13(3): 231–251.

12. Sudesh, K., and Iwata, T. (2008). Sustainability of Biobased and Biodegradable Plastics. CLEAN,
soil, air, water, 36(5-6), 433–442.
13. Song,J. H.,Murphy, R. J., Narayan, R. and Davies, G. B. H. (2009). Biodegradable and compostable

alternatives to conventional plastics. Philosophical transactions of the Royal Society of London B-
Biological Science 364, 2127–2139.

14. Sorrentino, A., Gorrasi, G. and Vittoria, V. (2007). Potential perspectives of bionanocomposites for
food packaging applications. Trends in Food Science and Technology 18, 84–95.
15. Jain, R., and Tiwari, A. (2015). Biosynthesis of planet friendly bioplastics using renewable carbon
source. J. Environ. Heal. Sci. Eng. 13, 11.
16. Clarinval, A. M., and Halleux, J. (2005). Classification of biodegradable polymers. In: Smith,
R.(Ed.), Biodegradable Polymers for Industrial Applications. Cambridge: Woodhead Publishing
Ltd, pp. 3–31.
17. Baastioli C., Cerutti A., Guanella I., et al. Physical state and biodegradation behaviour of
starchpolycaprolactone systems, J EnvironPolymDegrad. 1995; 3(2): 81–95p.
18. Forssell P., Lahtinen R., Lahelin M., et al. Oxygen permeability of amylose and amylopectin
films,CarbohydrPolym. 2002; 47: 125–9p
19. Pandey J.K., Takagi H., Nakagaito A.N., et al. An overview on the cellulose based conducting
composites, Compos Part B: Eng. 2012; 43(7): 2822–6p.
20. Itävaara M., Siika-aho M., Viikari L. Degradation of cellulose acetatebased materials: a review, J
PolymEnviron.. 1999; 23(4): 449–58p.
21. Briassoulis D. An overview on the mechanical behavior of biodegradable agricultural films,
JPolym. 2004; 12: 65–81p.
22. Ruban S.W. Biobased packaging – application in meat industry, VetWorld. 2009; 2(2): 79–82p.
23. Jacobsen S., Fritz H.G., Plasticizing polylactide the effect of different plasticizers on the mechanical
properties, Polym Eng. 1999; 39: 1303–10p
24. Yalcin B., Cakmak M., Arkın A.H., et al. Control of optical anisotropy at large deformations in
PMMA/chlorinated-PHB (PHB-Cl) blends: mechano-optical behavior, Polymer. 2006; 47(24):
8183–93p.
25. Modi S., Koelling K., Vodovotz Y. Assessment of PHB with varying hydroxyvalerate content for
potential packaging applications, EurPolym J. 2011; 47(2): 179–86p.
26. Averous, L. and Pollet, E. (2012). Environmental Silicate Nano- Biocomposites. Springer, London
Heidelberg, New York Dordrecht,
27. Whistler, R.L.and BeMiller, J.N. (2007). Starches, modified food starches, and other products from
starches. In: BeMiller, J.N. (Ed.), Carbohydrate Chemistry for Food Scientists. American
Association of Cereal Chemists, St. Paul, MN, pp. 117_151.www.european-bioplastics.org. (2017).
28. Yadav, A., Mangaraj, S., Singh, R., Mahanti, N., M and Arora, S. (2018). Biopolymers as packaging
material in food and allied industry. International Journal of Chemical Studies, 6 (2): 2411–2418.
29. Majid, I., Thakur, M. and Nanda, V. (2018). Biodegradable packaging materials. Elsevier Inc.
30. Morillon V, Debeaufort F, Blond G, Capelle M and Voilley A. (2002). Factors affecting the
moisture permeability of lipid-based edible films: a review. Critical Reviews in Food Science and
Nutrition, 42(1): 67–89.
31. Thakur, V.K. and Thakur, M.K. (2016). Handbook of sustainable polymers: Processing and
applications; Pan Stanford Publishing: Singapore
32. Gemili,S., Yemenicioglu, A., and Altinkaya, S. A. (2009). Development of cellulose acetate based
antimicrobial food packaging materials for controlled release of lysozyme. Journal of Food
Engineering 90, 453–462.
33. Otles, S. and Otles, S. (2004). Manufacturing of Biobased Packaging Materials for the Food
Industry. Acta Sci. Pol Technologia Alimentaria, 3(2):13–17.
34. Kokoszka, S., Debeaufort, F., Hambleton, A., Lenart, A. and Voilley, A. (2010). Protein and
glycerol contents affect physico-chemical properties of soy protein isolate-based edible films.
Innov. Food Sci. Emerg. 11, 503–510.
35. Shukla, P. T. (1992). Trends in Zein Research and Utilization. Cereal Foods World, 37: 225.

36. Rasal, R.M., Janorkar, A.V., and Hirt, D.E. (2010). Poly(lactic acid) modifications. Progress
inPolymer Science, 35, 338– 356.
37. Rasal, R.M., Janorkar, A.V., and Hirt, D.E. (2010). Poly(lactic acid) modifications. Progress
inPolymer Science, 35, 338– 356.
38. Auras, R., Singh, S. P., and Singh., J.J. (2005). Evaluation of oriented poly (lactide) polymers vs.
existing PET and oriented PS for fresh food servicecontainers. Packaging Technology and Science.
18:207–216.
39. Tharanathan, R. N. (2003). Review – biodegradable films and composite coatings: past, present and
future. Trends in Food Science and Technology, 14, 71–78.
40. Castilho, L.R., Mitchell, D.A. and Freire, D.M.G. (2009). Production of polyhydroxyalkanoates
(PHAs) from waste materials and by-products by submerged and solid-state fermentation. Biores.
Technol. 100, 5996_6009.
41. Tripathi, A.D., Srivastava, S.K. and Yadav, A. (2015). Biopolymers: potential biodegradable
packaging material for food industry. In: Alavi, S., Thomas, S., Sandeep, K.P., Kalarikkal, N.,
Varghese, J., Yaragalla, S. (Eds.), Polymers for Packaging Applications. first ed. Apple Academic
Press, Oakville, Canada, pp. 153–172.
42. Freitas, F., Alves, V.D., Reis, M.A., Crespo, J. G. and Coelhoso, I.M. (2014). Microbial
polysaccharide-based membranes: Current and future applications. Journal of Applied Polymer
Science 131, 40047–40058
43. Quoc, L., Hoa, D., Ngoc, H.and Phi, T. (2015). Effect of xanthan gum solution on the preservation
of acerola. CercetariAgronomiceîn Moldova 48, 89–97.
44. Scott, G. and Wiles, D.M. (2001). Programmed-life plastics from polyolefins: A new look at
sustainability. Biomacromolecules 2, 615–622.
45. Malgorzata Gumienna, Artur Szwengiel, Barbara Gorna. Bioactive components of pomegranate
fruit and their transformation by fermentation processes. European Food Research and Technology.
2016; 242(5): 348.
46. Chozhavendhan S, Usha P, Sowmiya G, Rohini G. A review on bioplastic production A Need to
the Society. International Journal of Pharmaceutical Sciences Review and Research. 2020; 62(1):
27–32.
47. Pradhan S. Optimization and Characterization of Bioplastic Produced by Bacillus Cereus SE1.
National Institute of Technology Rourkela, Odisha. 2014.
48. Kalia S, Dufresne A, Cherian BM, Kaith BS, Av’erous L, Njuguna J, Nassiopoulos E. Cellulose
based bio- and nanocomposites: A review. International Journal of Polymer Science. 2011; 3(3):
1–35.
49. Shamsuddin IM, Jafar JA, Shawai ASA, Yusuf S, Lateefah M, Aminu I. Bioplastics as Better
Alternatives to Petroplastics and Their Role in National Sustainability: A Review. Advances in
Bioscience and Bioengineering. 2017; 5(4): 63–40.
50. Chen YJ. Bioplastic and their role in achieving global sustainability. Journal of Chemical and
Pharmaceutical Research. 2014; 6(1): 226–231.
51. Reddy RL, Reddy VS, Gupta GA. Study of Bioplastics as Green & Sustainable Alternative to
Plastics. International Journal of Emerging Technology and Advanced Engineering. 2013; 3(5): 82–
89.
52. Arikan EB, Ozsoy HD. A Review: Investigation of Bioplastics. Journal of Civil Engineering and
Architecture. 2015; 9(2): 188–192.
53. Yu J, Chen LXL. The Greenhouse Gas Emissions and Fossil Energy Requirement of Bioplastics
from Cradle to Gate of a Biomass Refinery. Environmental Science and Technology. 2008; 42(18):
6961–6966.
54. Shivam P. Recent Developments on biodegradable polymers and their future trends. International
Research Science Eng. 2016; 4(1): 17–26
55. Ilyas RA, Sapuan SM, Sanyang ML, Ishak MR. Nanocrystalline cellulose reinforced starch based
nanocomposite: A review Conference: 5th postgraduate senior on natural fiber composites. At
University Putra Malaysia. 2016; 82–87

56. Nafisa Jabeen N, Majid I, Nayik GA. Bioplastics and Food Packaging: A Review. Cogent Food &
Agriculture. 2015; 42(1): 01–06.
57. Kumar S, Thakur KS. Bioplastics – Classification, production and their potential food application.
Journal of Hill Agriculture. 2017; 8(2): 118–129.
58. Mehta Varda, Darshan M, Nishith D. Can a Starch Based Plastic Be an option of Environmental
Friendly Plastic? Journal of Global Biosciences. 2014; 3(3): 681–685.
59. Sabbah M, Porta R. Plastic Pollution and the challenge of bioplastics. Journal of Applied
Biotechnology & Bioengineering Opinion. 2017; 2(3): 111.
60. Barker M, Safford R. Industrial uses for crops: Markets for Bioplastics. HGGA. 2009.
61. Modi VK, Shrives Y, Sharma C, Sen PK, Bohidar SK. Review on Green Polymer Nanocomposite
and their Applications. International Journal of Innovative Research in Science, Engineering and
Technology. 2014; 3(11): 17651–17656.
62. Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol JF. Application of cellulose
microfibrils in polymer nanocomposites. Journal of Polymers and the Environment. 2005; 13(4):
301–306.
63. Khosravi-DaraniK, Bucci DZ. Application of Poly(hydroxyalkanoate) in Food Packaging:
Improvements by Nanotechnology. Chemical and Biochemical Engineering Quarterly. 2015; 29(2):
275-285.
64. Beucker S, Marscheider-weidemann F. Potentials and Challenges of Bioplastics Insights from a
German Survey on “Green” Future markets. In Hilty, L. M., Edelmann, X. and Ruf, A. (Eds.) R’07
World Congress, September 3-5, Davos, Switzerland. St. Gallen: EMPA.2007.
65. Brodin M, Vallejos M, Tanase M, Chinga-carrasco, G. Lignocellulosics as sustainable resources
for production of bioplastics – A Review. Journal of Cleaner Production. 2017; 162(1): 646–664.

If-Else Example
>