Characterization of Mechanical and Viscoelastic Properties of Ceramic Nanoparticle-Reinforced Polymer Composites

Author: T. S. Senthil Journal of Polymer and Composites-STM Journals Issn: 2321-2810 Date: 2024-11-15 04:04 Volume: 13 Issue: 01 Keyworde: Ceramic nanoparticle-reinforced composites, mechanical properties, dynamic mechanical analysis (DMA), coefficient of thermal expansion (CTE), epoxy matrix Full Text PDF Submit Manuscript Journals

Abstract

This study examines the mechanical and viscoelastic properties of polymer composites reinforced with ceramic nanoparticles, specifically focusing on enhancing the performance of the material through the incorporation of alumina nanoparticles. The composites were produced by embedding alumina nanoparticles into an epoxy matrix, and their properties were assessed using tensile, flexural, and dynamic mechanical analyses (DMA). The tensile tests showed a remarkable 40% increase in tensile strength and a 35% enhancement in elastic modulus compared to neat epoxy, indicating improved load-bearing capabilities. Flexural testing revealed a 30% increase in flexural strength and a 25% rise in flexural modulus, suggesting enhanced resistance to bending forces. DMA results highlighted a 50% improvement in storage modulus, which points to increased stiffness over a temperature range of 25°C to 200°C. Additionally, the glass transition temperature (Tg) of the composite increased by 15°C, reflecting improved thermal stability. The Coefficient of Thermal Expansion (CTE) measurements indicated a significant reduction, showing better dimensional stability at elevated temperatures due to the presence of ceramic nanoparticles. These findings underscore the potential of ceramic nanoparticle-reinforced polymer composites for high-performance applications where improved mechanical strength, thermal stability, and dimensional accuracy are critical. These characteristics make the composites ideal candidates for use in demanding industries such as aerospace, automotive, and electronics, where materials must withstand extreme conditions while maintaining structural integrity.

Keywords: Ceramic nanoparticle-reinforced composites, mechanical properties, dynamic mechanical analysis (DMA), coefficient of thermal expansion (CTE), epoxy matrix

Keyworde: Ceramic nanoparticle-reinforced composites, mechanical properties, dynamic mechanical analysis (DMA), coefficient of thermal expansion (CTE), epoxy matrix

Full Text PDF

Refrences:

  1. Smith JA, Thompson B. Properties and applications of ceramic nanoparticles in polymer matrices. J Mater Sci. 2020;55(12):5234-42.
  2. Anderson RP, Gupta ML. Role of surface functionalization in ceramic nanoparticle composites. Adv Compos. 2019;45(3):199-207.
  3. Williams P, Evans T. Strength and toughness improvements in ceramic-reinforced polymer composites. Polym Eng Sci. 2018;48(4):1210-6.
  4. Harris D, Patel N. Thermal conductivity enhancements in ceramic nanoparticle epoxy composites. J Appl Polym Sci. 2021;130(6):2015-23.
  5. Chen LX, Wong KT. Ultrasonication and mechanical stirring techniques in dispersing ceramic nanoparticles. J Nanomater. 2019;1912-23.
  6. Jones SA, Brown HG. Effect of curing processes on the mechanical properties of nanoparticle composites. Compos Sci Technol. 2017;67(9):1345-54.
  7. Kumar A, Verma P. Thermal performance of ceramic nanoparticle-reinforced composites. Therm Mater Rev. 2021;38(2):241-52.
  8. Taylor MR, Singh JK. Glass transition temperature and thermal stability in epoxy-based composites. J Polym Res. 2019;26(11):1012-23.
  9. White RH, Diaz FM. Applications of ceramic-reinforced polymers in aerospace engineering. Aerosp Mater J. 2020;75(5):901-12.
  10. Zhao X, Feng PY. Polymer nanocomposites for high-temperature electronics. Electron Mater Rev. 2018;42(3):567-79.
  11. Singh P, Chatterjee R. Creep resistance of polymer composites reinforced with ceramic nanoparticles. Mater Today: Proc. 2021;11:455-66.
  12. Roy S, Agarwal A. Crack propagation in ceramic nanoparticle-reinforced composites. J Mater Res. 2020;12(4):987-96.
  13. Felix Prabhu F, Kumar KP, Shanmugam A, Kumar M, Senthil TS, Dhanraj JA. Study on wear behaviour of Al6061 MMC with nano-MoC. Mater Today: Proc. 2022;69(Part 3):1154-58.
  14. Mary Jasmin N, Sathish S, Senthil TS, Naidu BA, Das AD, Arun KK, Subbiah R, Srinivasan K. Investigation on natural fiber reinforced polymer matrix composite. Mater Today: Proc. 2023;74(Part 1):60-63.
  15. Gonzalez FL, Kaur S. Surface modification of ceramic nanoparticles to enhance interfacial bonding. J Polym Eng. 2018;35(8):1203-13.
  16. Smith MK, Harper E. Nanoparticles for biodegradable composites: Challenges and opportunities. J Green Chem. 2021;22(1):124-33.
  17. Roy R, Kumar P. Dielectric strength enhancement with ceramic nanoparticle reinforcement. J Appl Electr Mater. 2019;23(9):765-72.
  18. Kim YJ, Lee S. Processing of nanocomposites: Techniques and challenges. Compos Manuf Process. 2018;12(3):145-55.
  19. Thomas P, Krishna R. Thermal stability and viscoelastic properties of epoxy composites. Polym Sci Technol. 2020;68(6):502-10.
  20. Wang L, Zhang Y. Silica-reinforced polymer nanocomposites for thermal insulation. J Appl Polym Sci. 2019;37(5):1101-10.
  21. Jones D, Patel R. Effect of alumina nanoparticles on the flexural strength of epoxy composites. J Compos Mater. 2019;45(8):667-75.
  22. Williams GS, Nelson B. Flexural behavior of polymer nanocomposites reinforced with silica nanoparticles. Polym Compos. 2018;39(12):1234-43.
  23. Johnson A, Singh T. Enhanced flexural modulus in epoxy composites reinforced with titania nanoparticles. Mater Sci Forum. 2020;107:253-62.
  24. Kim H, Park J. Effect of surface treatment of ceramic nanoparticles on flexural properties. J ReinfPlast Compos. 2017;36(11):1020-30.
  25. Nash P, Yu W. Influence of nanoparticle concentration on the flexural properties of polymer composites. Compos Part A: Appl Sci Manuf. 2019;122:17-24.
  26. Jones D, Patel R. Effect of alumina nanoparticles on the flexural strength of epoxy composites. J Compos Mater. 2019;45(8):667-75.
  27. Kim S, Zhou Y. Enhancement of tensile strength in polymer composites by silica nanoparticle reinforcement. Polym Eng Sci. 2018;48(4):1956-64.
  28. Johnson A, Singh T. Enhanced flexural modulus in epoxy composites reinforced with titania nanoparticles. Mater Sci Forum. 2020;107:253-62.
  29. Kim H, Park J. Effect of surface treatment of ceramic nanoparticles on flexural properties. J ReinfPlast Compos. 2017;36(11):1020-30.
  30. Nash P, Yu W. Influence of nanoparticle concentration on the flexural properties of polymer composites. Compos Part A: Appl Sci Manuf. 2019;122:17-24.
  31. Smith T, Brown D. Tensile properties of epoxy composites reinforced with alumina nanoparticles. J Appl Polym Sci. 2019;56(11):201-8.
  32. Kim S, Zhou Y. Enhancement of tensile strength in polymer composites by silica nanoparticle reinforcement. Polym Eng Sci. 2018;48(4):1956-64.
  33. Chen P, Liu X. Tensile modulus improvement in epoxy composites with zirconia nanoparticles. Mater Today: Proc. 2020;15:45-53.
  34. Raj S, Kumar N. Tensile failure analysis of ceramic nanoparticle-reinforced composites. J Mater Res. 2018;33(7):889-97.
  35. Lee D, Wang X. The role of nanoparticle dispersion in the tensile properties of polymer composites. Compos Sci Technol. 2019;65(3):221-9.
  36. Evans G, Paul F. Viscoelastic properties of ceramic-reinforced epoxy composites. J Appl Mech. 2020;67(4):305-14.
  37. Thomas A, Stewart K. Dynamic mechanical analysis of polymer composites reinforced with silica nanoparticles. Polym Test. 2019;34(9):67-75.
  38. Patel N, Singh J. Thermal stability and viscoelastic behavior of epoxy composites with alumina nanoparticles. Mater Sci Eng A. 2021;42(6):104-12.
  39. Chen L, Xu Z. Improved viscoelastic damping in nanoparticle-reinforced epoxy composites. J ReinfPlast Compos. 2019;37(3):145-53.
  40. Yoo M, Kim J. Effect of temperature on the viscoelastic properties of ceramic nanoparticle-filled polymers. Compos Part B: Eng. 2018;123:305-11.
  41. Chen Y, Liu F. Thermal expansion behavior of ceramic nanoparticle-reinforced epoxy composites: Experimental and theoretical study. J Mater Sci. 2019;54(5):3800-12. 
  42. Zhao X, Feng PY. Thermal and mechanical properties of polymer nanocomposites for high-temperature applications. Compos Sci Technol. 2018;167:203-10.
>