Illuminating the Frontier of Drug Discovery: Unleashing the Power of Bioinformatics for Unprecedented Breakthroughs

Author: S. Luqman Ali, Awais Ali, Waseef Ullah, Kashif Adil, M. Usman International Journal of Molecular Biotechnological Research-STM Journals Issn: Date: 2024-01-02 11:10 Volume: 01 Issue: 02 Keyworde: Bioinformatics, Drug discovery, Ligand-based drug design, Structure-based drug design, Virtual screening, QSAR, Machine learning, Data assortment Full Text PDF Submit Manuscript Journals

Abstract

Keyworde: Bioinformatics, Drug discovery, Ligand-based drug design, Structure-based drug design, Virtual screening, QSAR, Machine learning, Data assortment

Full Text PDF

Refrences:

Ajjarapu, S. M., Tiwari, A., Ramteke, P. W., Singh, D. B., & Kumar, S. (2022). Ligand-based
drug designing. In Bioinformatics (pp. 233–252). Elsevier.
2. Crampon, K., Giorkallos, A., Deldossi, M., Baud, S., & Steffenel, L. A. (2022). Machine-learning
methods for ligand–protein molecular docking. Drug Discovery Today, 27(1), 151–164.
3. Deng, J., Yang, Z., Ojima, I., Samaras, D., & Wang, F. (2022). Artificial intelligence in drug
discovery: applications and techniques. Briefings in Bioinformatics, 23(1).
4. Gertrudes, J. C., Maltarollo, V. G., Silva, R. A., Oliveira, P. R., Honorio, K. M., & Da Silva, A.
B. F. (2012). Machine learning techniques and drug design. Current Medicinal Chemistry, 19(25),
4289–4297.
5. Hemmerling, F., & Piel, J. (2022). Strategies to access biosynthetic novelty in bacterial genomes
for drug discovery. Nature Reviews Drug Discovery, 21(5), 359–378.
6. Irham, L. M., Adikusuma, W., & Perwitasari, D. A. (2022). Genomic variants-driven drug
repurposing for tuberculosis by utilizing the established bioinformatic-based approach.
Biochemistry and Biophysics Reports, 32, 101334.
7. Labjar, H., Labjar, N., & Kissi, M. (2022). QSAR Anti-HIV Feature Selection and Prediction for
Drug Discovery Using Genetic Algorithm and Machine Learning Algorithms. In Computational
Intelligence in Recent Communication Networks (pp. 191–204). Springer.
8. Neves, B. J., Braga, R. C., Melo-Filho, C. C., Moreira-Filho, J. T., Muratov, E. N., & Andrade, C.
H. (2018). QSAR-based virtual screening: advances and applications in drug discovery. Frontiers
in Pharmacology, 9, 1275.
9. Parikh, P. K., Savjani, J. K., Gajjar, A. K., & Chhabria, M. T. (2023). Bioinformatics and
Cheminformatics Tools in Early Drug Discovery. Bioinformatics Tools for Pharmaceutical Drug
Product Development, 147–181.
10. Rastogi, S. C., Rastogi, P., & Mendiratta, N. (2022). Bioinformatics: Methods and ApplicationsGenomics, Proteomics and Drug Discovery. PHI Learning Pvt. Ltd.
11. Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug
discovery. Pharmacological Reviews, 66(1), 334–395.
12. Ugbaja, S. C., Mtambo, S. E., Mushebenge, A. G., Appiah-Kubi, P., Abubakar, B. H., Ntuli, M.
L., & Kumalo, H. M. (2022). Structural Investigations and Binding Mechanisms of Oseltamivir
Drug Resistance Conferred by the E119V Mutation in Influenza H7N9 Virus. Molecules, 27(14).
13. Winkler, D. A. (2022). The impact of machine learning on future tuberculosis drug discovery.
Expert Opinion on Drug Discovery, 17(9), 925–927.
14. Yao, H., Liu, J., Xu, M., Ji, J., Dai, Q., & You, Z. (2022). Discussion on molecular dynamics
(MD) simulations of the asphalt materials. Advances in Colloid and Interface Science, 299,
102565.

If-Else Example
>