In-silico Design of Multi-epitope Vaccine for Tackling Type-1 Parainfluenza Virus
Abstract
Human parainfluenza viruses (HPIV) often cause breathing infections, particularly in kids and infants.
HPIV-1 is known for causing severe croup, yet no approved vaccines exist for HPIV infections. This
study employed an in-silico approach to design a potential vaccine candidate targeting the fusion
glycoprotein antigen of HPIV-1. Results highlighted that B-cell and T-cell epitopes were successfully
identified from the fusion glycoprotein antigen using in-silico methods. Epitopes passing antigenicity,
allergenicity, and toxicity assessments were selected and connected using appropriate linkers. The
constructed vaccine exhibited favorable physiochemical properties, structural stability, and strong
binding affinity with the TLR (Toll like receptor)-8. The vaccine sequence was successfully cloned into
the pET-28a (+) vector. In Conclusion This study presents a promising development in the quest for an effective HPIV-1 vaccine. The design and construction of the multi-epitope vaccine, along with its
structural validation, provide a solid foundation for further research. However, additional in vitro and
in vivo investigations are crucial to assess the vaccine’s efficacy, immunogenicity, and safety prior to
clinical application.
Keywords: Human parainfluenza virus, Antigen, In-silico vaccine design, In-silico cloning
INTRODUCTION
Background
Human parainfluenza viruses (HPIVs) are enveloped, negative-stranded RNA viruses belong to
paramyxoviridae family. These viruses comprise four serotypes, including HPIV-1, HPIV-2, HPIV-3,
and HPIV-4, and are known to cause infections in both the upper and lower respiratory tracts. HPIVs
are a significant cause of respiratory illnesses worldwide, particularly among infants, young children,
and immunocompromised individuals [1].
Keyworde: Human parainfluenza virus, Antigen, In-silico vaccine design, In-silico cloning
Full Text PDF
Refrences:
1. Branche AR, Falsey AR (2016) Parainfluenza virus infection. Semin Respir Crit Care Med 37:538–
54. https://doi.org/10.1055/s-0036-1584798
2. Elboukari H, Ashraf M (2023) Parainfluenza Virus. StatPearls Publishing
3. Slobod KS, Shenep JL, Luján-Zilbermann J, Allison K, Brown B, Scroggs RA, Portner A,
Coleclough C, Hurwitz JL (2004) Safety and immunogenicity of intranasal murine parainfluenza
virus type 1 (Sendai virus) in healthy human adults. Vaccine 22:3182-3186.
https://doi.org/10.1016/j.vaccine.2004.01.053
4. Smith CB, Purcell RH, Bellanti JA, Chanock RM, Laine P (1966) Protective effect of antibody to
parainfluenza type 1 virus. N Engl J Med 275:1145-1152. https://doi.org/10.1056/nejm
196611242752101
5. Pawełczyk M, Kowalski ML (2017) The Role of Human Parainfluenza Virus Infections in the
Immunopathology of the Respiratory Tract. Curr Allergy Asthma Rep 17:1-10.
https://doi.org/10.1007/s11882-017-0685-2
6. Schomacker H, Schaap-Nutt A, Collins PL, Schmidt AC (2012). Pathogenesis of acute respiratory
illness caused by human parainfluenza viruses. Curr Opin Virol 2:294-299.
https://doi.org/10.1016/j.coviro.2012.02.001
7. Moscona A (2005) Entry of parainfluenza virus into cells as a target for interrupting childhood
respiratory disease. J. Clin. Invest 115:1688–1698. https://doi.org/10.1172/jci25669
8. Henrickson KJ (2003) Parainfluenza viruses. Clin Microbiol Rev 16:242-264.
https://doi.org/10.1128/cmr.16.2.242-264.2003
9. Russell CJ, Simões EAF, Hurwitz JL (2018) Vaccines for the Paramyxoviruses and Pneumoviruses:
Successes, Candidates, and Hurdles. Viral Immunol 31:133–141.
10. van Wyke Coelingh K, Tierney EL (1989) Antigenic and functional organization of human
parainfluenza virus type 3 fusion glycoprotein. J Virol 63:375-382.
https://doi.org/10.1128/jvi.63.1.375-382.1989
11. Wang Y, Wang Q, Huang H, Huang W, Chen Y, McGarvey PB, Wu CH, Arighi CN (2021). A
crowdsourcing open platform for literature curation in UniProt. PLoS Biol 19:e3001464.
https://doi.org/10.1371/journal.pbio.3001464
12. Doytchinova IA, Flower DR (2007). VaxiJen: a server for prediction of protective antigens, tumour
antigens and subunit vaccines. BMC Bioinformatics 8:1-7. https://doi.org/10.1186/1471-2105-8-4
13. Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014). AllerTOP v. 2—a server for in silico
prediction of allergens. J Mol Model 20:1-6. https://doi.org/10.1007/s00894-014-2278-5
14. Xiao X, Wu Z-C, Chou K-C (2011). A multi-label classifier for predicting the subcellular
localization of gram-negative bacterial proteins with both single and multiple sites. PLoS One
6:e20592. https://doi.org/10.1371/journal.pone.0020592
15. Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based
B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24-W29.
https://doi.org/10.1093/nar/gkx346
16. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters
B (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339-D343.
https://doi.org/10.1093/nar/gky1006
17. Yan F, Polk DB (2020) Probiotics and probiotic-derived functional factors—mechanistic insights
into applications for intestinal homeostasis. Front Immunol 11:1428.
https://doi.org/10.3389/fimmu.2020.01428
18. Naveed M, Tehreem S, Arshad S, Bukhari SA, Shabbir MA, Essa R, Ali N, Zaib S, Khan A, AlHarrasi A, Khan I (2021) Design of a novel multiple epitope-based vaccine: An immunoinformatics
approach to combat SARS-CoV-2 strains. J Infect Public Health 14:938-946.
https://doi.org/10.1016/j.jiph.2021.04.010
19. Dong R, Chu Z, Yu F, Zha Y (2020) Contriving Multi-Epitope Subunit of Vaccine for COVID-19:
Immunoinformatics Approaches. Front. Immunol 11:1784.
https://doi.org/10.3389/fimmu.2020.01784
20. Hasan M, Mia M (2022) Exploratory Algorithm of a Multi-epitope-based Subunit Vaccine
Candidate Against Cryptosporidium hominis: Reverse Vaccinology-Based Immunoinformatic
Approach. Int J Pept Res Ther 28(5):134. https://doi.org/10.1007/s10989-022-10438-6
21. Maleki A, Russo G, Parasiliti Palumbo GA, Pappalardo F (2022) In silico design of recombinant
multi-epitope vaccine against influenza A virus. BMC Bioinform 22(14):1-18.
https://doi.org/10.1186/s12859-022-04581-6
22. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein
identification and analysis tools on the ExPASy server. Springer Protocols Handbooks. Humana
press 571-607. https://doi.org/10.1385/1-59259-890-0:571
23. Hon J, Marusiak M, Martinek T, Zendulka J, Bednar D, Damborsky J (2021) SoluProt: prediction
of soluble protein expression in Escherichia coli. Bioinformatics 37:23-28.
https://doi.org/10.1093/bioinformatics/btaa1102
24. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring
matrices. J Mol Biol 292:195-202. https://doi.org/10.1006/jmbi.1999.3091
25. Wang S, Li W, Liu S, Xu J (2016) RaptorX-Property: a web server for protein structure property
prediction. Nucleic Acids Res 44:W430-W435. https://doi.org/10.1093/nar/gkw306
26. Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and
refinement. Nucleic Acids Res 40:W294-W297. https://doi.org/10.1093/nar/gks493
27. Wiederstein M, Sippl MJ (2007). ProSA-web: interactive web service for the recognition of errors
in three-dimensional structures of proteins. Nucleic Acids Res 35:W407-W410.
https://doi.org/10.1093/nar/gkm290
28. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check
the stereochemical quality of protein structures. J. Appl. Cryst 26:283-291.
https://doi.org/10.1107/s0021889892009944
29. Xagorari A, Chlichlia K (2008) Toll-like receptors and viruses: induction of innate antiviral immune
responses. Open Microbiol J 2:49. https://doi.org/10.2174/1874285800802010049
30. Desta IT, Porter KA, Xia B, Kozakov D, Vajda S (2020) Performance and its limits in rigid body
protein-protein docking. Structure 28:1071-1081.e1073. https://doi.org/10.1016/j.str.2020.06.006
31. López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón (2014) iMODS: internal coordinates normal
mode analysis server. Nucleic Acids Res 42:W271-W276. https://doi.org/10.1093/nar/gku339
32. Rice P, Longden I, Bleasby (2000) EMBOSS: the European molecular biology open software suite.
Trends Genet 16:276-277. https://doi.org/10.1016/s0168-9525(00)02024-2
33. Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel
tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res
33:W526-W531. https://doi.org/10.1093/nar/gki376
34. Samad A, Ahammad F, Nain Z, Alam R, Imon RR, Hasan M, Rahman MS (2022) Designing a
multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J Biomol Struct
Dyn 40:14-30. https://doi.org/10.1080/07391102.2020.1792347
35. Yang Z, Bogdan P, Nazarian (2021) An in silico deep learning approach to multi-epitope vaccine
design: a SARS-CoV-2 case study. Sci Rep 11:1-21. https://doi.org/10.21203/rs.3.rs-36528/v1
36. Naveed M, Yaseen AR, Khalid H, Ali U, Rabaan AA, Garout M, Halwani MA, Al Mutair A,
Alhumaid S, Al Alawi Z, Alhashem YN (2022) Execution and Design of an Anti HPIV-1 Vaccine
with Multiple Epitopes Triggering Innate and Adaptive Immune Responses: An Immunoinformatic
Approach. Vaccines 10:869. https://doi.org/10.3390/vaccines10060869
37. Khatoon N, Pandey RK, Prajapati VK (2017) Exploring Leishmania secretory proteins to design B
and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep 7:1-12.
https://doi.org/10.1038/s41598-017-08842-w
38. Howard LM, Rankin DA, Spieker AJ, Gu W, Haddadin Z, Probst V, Rahman H, McHenry R, Pulido
CG, Williams JV, Faouri S (2021) Clinical features of parainfluenza infections among young
children hospitalized for acute respiratory illness in Amman, Jordan. BMC Infect Dis 2:1-9.
https://doi.org/10.1186/s12879-021-06001-1
39. Marcink TC, Porotto M, Moscona A (2021) Parainfluenza virus entry at the onset of infection. Adv
Virus Res 111:1–29. https://doi.org/10.1016/bs.aivir.2021.07.001
40. Linster M, Do LA, Minh NN, Chen Y, Zhe Z, Tuan TA, Tuan HM, Su YC, van Doorn HR, Moorthy
M, Smith GJ (2018) Clinical and molecular epidemiology of human parainfluenza viruses 1–4 in
children from Viet Nam. Sci Rep 81-8. https://doi.org/10.1038/s41598-018-24767-4
41. Nelluri KDD, Ammulu MA, Durga ML, Sravani M, Kumar VP, Poda S (2022) In silico multiepitope Bunyumwera virus vaccine to target virus nucleocapsid N protein. J Genet Eng Biotechnol
20(1):89. https://doi.org/10.1186/s43141-022-00355-y
42. Akhtar N, Singh A, Upadhyay AK, Mannan MA (2022) Design of a multi-epitope vaccine against
the pathogenic fungi Candida tropicalis using an in silico approach. J Genet Eng Biotechnol 20:140.
https://doi.org/10.1186/s43141-022-00415-3
43. Shahab M, Hayat C, Sikandar R, Zheng G, Akter S (2022) In silico designing of a multi-epitope
vaccine against Burkholderia pseudomallei: reverse vaccinology and immunoinformatics. J Genet
Eng Biotechnol 20:100. https://doi.org/10.1186/s43141-022-00379-4