Monitoring Eddy Current Density Fluctuation and Power Management in Doped Al2O3 Nanowire

Author: Gizachew Diga Milki Nano Trends : A Journal of Nanotechnology and-STM Journals Issn: 0973-418X Date: 2024-08-29 02:19 Volume: 26 Issue: 01 Keyworde: Al2O3 nanowire, eddy current, density fluctuation, power management Full Text PDF Submit Manuscript Journals

Abstract

Al2O3 nanowires exhibit fascinating electrical properties that span from insulating (dielectric) to superconducting properties. A model was designed to describe the phenomenon of the eddy electric current and eddy current density fluctuations. An Ohmic-type theorem was developed using the modified Green–Kubo theorem. With little modification, the Green–Kubo theorem was incorporated to explain the relationship between the eddy current density, electric field, and electric conductivity. Then, the factors contributing to eddy current density fluctuations were demystified. The current density fluctuation is therefore responsible for the resulting power dissipation in Al2O3 based transmission lines. A systematic approach is required to reduce dissipative effects and current density fluctuations. The electrical conductivity test is conveyed from the J − E⃗ graph while the electrical parameters characterizing the electrical transport phenomenon are determined from the J-Δn graph. The effects of coating nanowires, wireless sensor networking systems, and electrical power distribution monitoring and management systems are expected to minimize the electric power fluctuations caused by eddy current density fluctuations. This research presents insight into electric current density fluctuations and stimulates new vision for monitoring power dissipations caused by eddy current fluctuations.

Keyworde: Al2O3 nanowire, eddy current, density fluctuation, power management

Full Text PDF

Refrences:

  1. Mikhalev KN, Germov AY, Ermakov AE, Uimin MA, Buzlukov AL, Samatov OM. Crystal structure and magnetic properties of Al2O3 nanoparticles by 27Al NMR data. Phys Solid State. 2017;59:514-9. DOI: 10.1134/S1063783417030246.
  2. Benea L, Simionescu-Bogatu N, Chiriac R. Electrochemically obtained Al2O3 nanoporous layers with increased anticorrosive properties of aluminum alloy. J Mater Res Technol. 2022;17:2636-47. DOI: 10.1016/j.jmrt.2022.02.038.
  3. Poinern GEJ, Ali N, Fawcett D. Progress in nano-engineered anodic aluminum oxide membrane development. Mater. 2011;4:487-526. DOI: 10.3390/ma4030487.
  4. Alencar DA, et al. Eddy current non-destructive test (NDT), a suitable tool to measure oxide layer thickness in PWR fuel rods. 2019 International Nuclear Atlantic Conference (INAC). Vol. 2009. ISBN.
  5. Xia X, Al-Mamun NS, Fares C, Haque A, Ren F, Hassa A, et al. Band alignment of Al2O3 on α- (AlxGa1-x)2O3. ECS J Solid State Sci Technol. 2022;11:025006. DOI: 10.1149/2162- 8777/ac546f.
  6. Oick OA, et al. The origin of negative charging in amorphous Al2O3 film; the role of native defects. Nanotechnology. 2019;30:2052d:14.
  7. Santos RCR, Longhinotti E, Freire VN, Reimberg RB, Caetano EWS. Elucidating the high-k insulator α-Al2O3 direct/indirect energy band gap type through density functional theory computations. Chem Phys Lett. 2015;637:172-6. DOI: 10.1016/j.cplett.2015.08.004.
  8. Astasawkas V, et al. Optical and electronic properties of amorphous silicon dioxide by single and double electron spectroscopy and related phenomena. 2020;241:146829.
  9. Bianconi S, Park MS, Mohseni H. Giant conductivity modulation of aluminum oxide using focused ion beam. ACS Appl Electron Mater. 2019;1:1208-14. DOI: 10.1021/acsaelm.9b00185.
  10. Reddy B Jr, Dorvel BR, Go J, Nair PR, Elibol OH, Credo GM, et al. High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing. Biomed Microdevices. 2011;13:335-44. DOI: 10.1007/s10544-010-9497-z.
  11. Black LE. Effect of boron concentrations on recombinations at the journal of applied physics. J Appl Phys. 2014;115:093707.
  12. Huang L, Lv X, Tang Y, Ge G, Zhang P, Li Y. Effect of alumina nanowires on the thermal conductivity and electrical performance of epoxy composites. Polymers (Basel). 2020;12:2126. DOI: 10.3390/polym12092126.
  13. Shin DM, Son H, Park KU, Choi J, Suk J, Kang ES, et al. Al2O3 ceramic/nanocellulose-coated non-woven separator for lithium metal batteries. Coatings. 2023;13:916. DOI: 10.3390/coatings 13050916.
  14. Trung VQ, Tung DN, Huyen DN. Polypyrrole/Al2O3 nanocomposites: Preparation, characterisation and electromagnetic shielding properties. J Exp Nanosci. 2009;4:213-9. DOI: 10.1080/17458080903115361.
  15. Harms J, Kern TA. Theory and modeling of eddy current type inductive conductivity sensors. Eng Proc. 2021;6:1-6. DOI: 10.3390/I3S2021Dresden-10103.
  16. Fal J, Żyła G, Gizowska M, Witek A, Cholewa M. Electrical properties of aluminum oxide-ethylene glycol (Al2O3-EG) nanofluids. Acta Phys Pol A. 2015;128:153-6. DOI: 10.12693/APhysPolA.128.153.
  17. He GC, Lu H, Dong XZ, Zhang YL, Liu J, Xie CQ, Zhao ZS. Electrical and thermal properties of silver nanowire fabricated on a flexible substrate by two-beam laser direct writing for designing a thermometer. RSC Adv. 2018;8:24893-9. DOI: 10.1039/c8ra03280g.
  18. Choe M, Jo G, Maeng J, Hong WK, Jo M, Wang G, et al. Electrical properties of ZnO nanowire field effect transistors with varying high-k Al2O3 dielectric thickness. J Appl Phys. 2010;107:034504. DOI: 10.1063/1.3298910.
  19. Aoulaiche M, Simoen E, Ritzenthaler R, et al. Impact of Al2O3 position on performance and reliability in high k-metal gated DRAM periphery transistor. 2023. p. 190-3. DOI: 10.1109/ESSDERC.2023.6818851.
  20. Liu XG, Geng DY, Liang JM, Zhang ZD. Magnetic stability of Al2O3-coated fcc-Co nanocapsules. J Alloys Compd. 2008;465:8-14. DOI: 10.1016/j.jallcom.2007.10.128.
  21. Kriezis EE, Tsiboukis TD, Panas SM, Tegopoulos JA. Eddy currents: Theory and applications. Proc IEEE. 1992;80:1559-89. DOI: 10.1109/5.168666.
  22. Chhim TL, Merlini A, Rahmouni L, Guzman JEO, Andriulli FP. Eddy current modeling in multiply connected regions via a full-wave solver based on the quasi-Helmholtz projectors. IEEE Open J Antennas Propag. 2020;1:534-48. DOI: 10.1109/OJAP.2020.3027186.
  23. Seyed M, Saba M, et al. Synthesizing high aspect ratio aluminum oxide nanowires from highly ordered anodic self-assembled templates. 2008.
  24. Dshelke P, Srajbhhoj A. Electrochemical synthesis and photocatalytic applications of mesoporous γ-Al2O3 nanoparticles. Dec Chem Sin. 2017;8:482-6.
  25. Zhang Y, Li R, Zhou X, Cai M, Sun X. Selective growth of α-Al2O3 nanowires and nanobelts. J Nanomater. 2008;8:250370. DOI: 10.1155/2008/250370.
  26. Shi Q, Aziz I, Ciou JH, Wang J, Gao D, Xiong J, et al. Al2O3/HfO2 nanolaminate dielectric boosting IGZO-based flexible thin-film transistors. Nano-Micro Lett. 2022;14:195. DOI: 10.1007/s40820-022-00929-y.
  27. Jumailis AH, et al. A concept & systematic of intelligent power management system based on cloud computing prospects and challenges. Appl Sci. 2021;11(21):9820. DOI: 10.3390/appl11219820.
  28. Al-Hussaini IH, Hassan HJ, Alshawi MM. Smart power management system based on wireless networks. Int J Adv Res Comput Eng Technol. 2019 Oct;8(10):439–445.
If-Else Example
>