Physics, Novel Concepts and Technical Analysis of GaMnAs Digital Alloys

Author: Kamal Nain Chopra, Ritu Walia International Journal of Metallurgy and Alloys-STM Journals Issn: 2456-5113 Date: 2024-12-12 10:46 Volume: 10 Issue: 02 Keyworde: Ferromagnetism in GaMnAs and InMnAs, GaMnAs digital alloys, magnetization measurements, magneto transport measurements, temperature dependence of sheet resistance Full Text PDF Submit Manuscript Journals

Abstract

GaMnAs Digital Alloys have recently drawn the attention of various workers, due to their very special
properties from the point of view of applications in spintronics. Physics and Novel Concepts of GaMnAs Digital Alloys have been presented in this paper. The various technical aspects of digital alloys likeIII1-xMnxV Random Alloys (InMnAs and GaMnAs), MBE grown GaMnAs Random Alloys, Photo- induced Ferromagnetism, Magnetization Measurements, MagnetoTransport Measurements, and Temperature Dependence of Sheet Resistance have been presented. Some of the important related studies have also been reviewed. Some ideas about other useful digital alloys have also been
incorporated. It has been highlighted how crucial these materials are for spintronic devices. The
material presented in this paper is expected to be of some use to the new researchers entering this field and the designers and technologists engaged in the fabrication of spintronic devices by using GaMnAs digital alloys.

Keyworde: Ferromagnetism in GaMnAs and InMnAs, GaMnAs digital alloys, magnetization measurements, magneto transport measurements, temperature dependence of sheet resistance

Full Text PDF

Refrences:

1. Ohno H. Toward functional spintronics. Science. 2001;291:840.
2. Oiwa A, Endo A, Katsumoto S, Iye Y, Ohno H, Munekata H. Phys Rev B. 1999;59:5826.
3. Matsukura F, Abe E, Ohno H. J Appl Lett. 2000;87:6442.
4. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D. Science. 2000;287:1019.
5. Ueda K, Tabata H, Kawai T. Appl Phys Lett. 2001;79:988.
6. Kawakami RK, Johnston-Halperin E, Chen LF, Hanson M, Guebels N, Speck JS, Gossard
AC, Awschalom DD. (Ga,Mn)As as a digital ferromagnetic heterostructure. Appl Phys
Lett. 2000;77:2379.
7. Abe E, Matsukura F, Yasuda H, Ohno Y, Ohno H. Physica E. 2000;7:981.
8. Jungwirth T, Niu Q, MacDonald AH. cond-mat/0110484. 2001.
9. Liu X, Lim WL, Ge Z, Shen S, Dobrowolska M, Furdyna JK, et al. Strain-engineered
ferromagnetic In1-xMnxAs films with in-plane easy axis. Appl Phys Lett. 2005;86:112512.
10. Yu KM, Walukiewicz W, Wojtowicz T, Lim WL, Liu X, Bindley U, et al. Curie
temperature limit in ferromagnetic Ga1–xMnxAs. Phys Rev B. 2003;68:041308(R).
11. Chen X, Na M, Cheon M, Wang S, Luo H, McCombe BD, et al. Above-room-temperature
ferromagnetism in GaSb/Mn digital alloys. Appl Phys Lett. 2002;81:511-513.
12. Yu KM, Walukiewicz W, Wojtowicz T, Kuryliszyn I, Liu X, Sasaki Y, et al. Effect of the
location of Mn sites in ferromagnetic Ga1–xMnxAs on its Curie temperature. Phys Rev B.
2002;65:201303(R).
13. Ohno H. J Magnetism Magnet Mater. 1999;200:110–129.
14. Franz J, Peiris FC, Liu X, Bindley U, Furdyna JK. Determination of the dielectric functions
of MBE-grown Zn1-xMgxTe II-VI semiconductor alloys. Phys Status Solidi B.
2004;241:507.
15. Kudelska-Kuryliszyn, Domagala JZ, Wojtowicz T, Liu X, Lusakowska E, Dobrowolski W,
et al. The effect of Mn interstitials on the lattice parameter of Ga1-xMnxAs. J Appl Phys.
2004;95:603.
16. Ohno H, Munekata H, Penney T, von Molnár S, Chang LL. Ferromagnetic interactions in
doped semiconductors and their nanostructures (invited). Phys Rev Lett. 1997;78:4617.
17. Liu X, Lim WL, Dobrowolska M, Furdyna JK, Wojtowicz T. Ferromagnetic resonance
study of the free-hole contribution to magnetization and magnetic anisotropy in
modulation-doped Ga1-xMnxAs / Ga1-yAlyAs.Phys Rev B. 2005;71:035307.)
18. Ruzmetov D, Scherschligt J, Baxter DV, Wojtowicz T, Liu X, Sasaki Y, et al. High-
temperature Hall effect in Ga1-xMnxAs. Phys Rev B. 2004;69:155207.
19. Rappoport TG, Redliński P, Liu X, Zaránd G, Furdyna JK, Jankó B. Anomalous behavior
of spin-wave resonances in Ga1-xMnxAs thin films. Phys Rev B. 2004;69:125213.
20. Baxter DV, Ruzmetov D, Scherschligt J, Sasaki Y, Liu X, Furdyna JK, et al. Anisotropic
magnetoresistance in Ga1–xMnxAs. Phys Rev B. 2002;65:212407.
21. Welp U, Vlasko-Vlasov VK, Liu X, Furdyna JK, Wojtowicz T. Magnetic domain structure and
magnetic anisotropy in Ga1-xMnxAs. Phys Rev Lett. 2003;90:167206.
22. Yuldashev SU, Im H, Yalishev VS, Park CS, Kang TW, Lee S, et al. Magnetoresistance of Ga1-
xMnxAs epitaxial layers doped by Be. Jpn J Appl Phys. 2003;42:6256.
23. Rüester C, Borzenko T, Gould C, Schmidt G, Molenkamp LW, Liu X, et al. Very large
magnetoresistance in lateral ferromagnetic (Ga,Mn)As wires with nanoconstrictions. Phys
Rev Lett. 2003;91:216602.
24. Liu X, Bindley U, Sasaki Y, Furdyna JK. Optical properties of epitaxial ZnMnTe and
ZnMgTe films for a wide range of alloy compositions. J Appl Phys. 2002;91:2859.
25. Hong J, Wang DS, Wu RQ. Carrier-induced magnetic ordering control in a digital (Ga,Mn)As
structure. Phys Rev Lett. 2005;94:137206.
26. Gleason JN, Hjelmstad ME, Dasika VD, Goldman RS, Fathpour S, Charkrabarti S, et al. Applied
Phys Lett. 2005;86:011911.
27. Vurgaftman I, Meyer JR. Curie-temperature enhancement in ferromagnetic semiconductor
superlattices. Phys Rev B. 2001;64:245207.
28. Lee KJ, Lee SY, Bae SK, Choi SH, Lee HJ, Chang J, et al. Magnetization reversal in
trilayer structures consisting of GaMnAs layers with opposite signs of anisotropic
magnetoresistance. Sci Rep. 2018;8:2288.
29. Azzouz L, Halit M, Charifi Z, Baaziz H, Denawi MR, Rérat H, et al. Magnetic semiconductor
properties of RbLnSe2 (Ln = Ce, Pr, Nd, Gd): A density functional study. J Magnetism Magnet
Mater. 2020;501:166448.
30. Bandyopadhyay A, Traxel DK, Kelle L, Lang M, Juhasz M, EliaZ N, et al. Alloy design via additive
manufacturing: Advantages, challenges, applications, and perspectives. Mater Today. 2022;52:207-
224.
31. Zainelabdeen IH, Ismail L, Omer FM, Khan KA, Schiffer A. Recent advancements in hybrid
additive manufacturing of similar and dissimilar metals via laser powder bed fusion. Mater Sci Eng
A. 2024;909:146833.
32. Kerimova S, Donmez O, Gunes M, Kuruoglu F, Aydin M, Gumus C, et al. Analysis of
mixed optical transitions in dilute magnetic AlAs/GaAs/GaMnAs quantum wells grown on
high substrate index by molecular beam epitaxy. Mater Sci Eng B. 2023;290:116349.
33. Piskorska-Homml E, Gas K. (Ga,Mn)N—Epitaxial growth, structural, and magnetic
characterization—Tutorial. J Appl Phys. 2024;135:071101. doi:10.1063/5.0189159.
34. Lahcene Azzouz, Mohamed Halit, Zoulikha Charifi, Hakim Baaziz, Michel Rérat Hassan Denawi,
Chérif F. Matta, Magnetic semiconductor properties of RbLnSe2 (Ln = Ce, Pr, Nd, Gd): A density
functional study, Journal of Magnetism and Magnetic Materials,Volume 501, 1 May 2020, 166448.
35. D. Traxel, Melanie Lang, Michael Juhasz, Noam Eliaz, Susmita Bose, Alloy design via additive
manufacturing: Advantages, challenges, applications and perspectives, Materials Today, Research:
Review. 2022 January–February;52:207–224.
36. Ibrahim H. Zainelabdeen, Linda Ismail, Omer F. Mohamed, Kamran A. Khan, Andreas Schiffer.
Recent advancements in hybrid additive manufacturing of similar and dissimilar metals via laser
powder bed fusion, Mater Sci Eng: A. 2024 September;909:146833.
37. Edyta Piskorska-Hommel and Katarzyna Gas, (Ga,Mn)N—Epitaxial growth, structural, and
magnetic characterization—Tutorial. J Appl Phys. 2024;135:071101,
https://doi.org/10.1063/5.0189159.

>