The Role of Pyruvate Dehydrogenase in Non-alcoholic Alcoholic Fatty Liver Disease: Therapeutic Insights and Future Directions

Author: Taneesha Gupta, Ankit, Pankaj Malhotra Research and Reviews: A Journal of Pharmacology-STM Journals Issn: 2230-9861 Date: 2025-02-17 11:33 Volume: 14 Issue: 03 Keyworde: Pyruvate dehydrogenase, therapeutic, NAFLD, diabetes mellitus, non-alcoholic fatty liver, oxidation stress Full Text PDF Submit Manuscript Journals

Abstract

Non-alcoholic fatty liver disorders (NAFLD) are defined by the accumulation of excess fat in the liver that has no other cause, such as drinking alcohol. Pyruvate dehydrogenase has been established as an alternative treatment for this disorder. NAFLD pathogenesis is complex and includes oxidative stress inflammatory processes and mitochondrial dysfunction. Impaired liver fatty acid oxidation and glucose oxidation are significant individuals in developing NAFLD, and strategies to reverse these defects can help alleviate the condition. A spectrum of liver diseases comprises NAFLD, which is currently referred to as metabolic dysfunction-associated liver disease (MASLD). The significant amounts of hepatocytes with minimal to no alcohol use hepatic steatosis disease indicates it. Over the next decade, NAFLD will overtake all other causes of cirrhosis due to its growing incidence, along with increased rates of obesity, metabolic syndromes, and, hence, prompting liver T2D transplantation. However, heart disease remains the leading cause of death, with a negligible proportion developing liver-related problems and fibrosis. To pathology, NAFLD is related to ergastoplasm stress, lipid toxicity, oxidative stress, and lipid depositions. Increased obesity and NAFLD, which is distinguished by the buildup of excess fat in the liver without alcohol abuse or other contributing factors like hepatitis C infection, are common in the public because of sedentary lifestyles and high-calorie consumption. Further, recent studies have demonstrated that, even while oxidative energy generation plays a minor role in the liver’s total glucose/ pyruvate metabolism, defects in glucose oxidation may potentially be a portion of the mitochondrial dysfunction in NAFLD. Therefore, hepatic steatosis can be reduced, and glucose homeostasis can be improved by reducing the defect in glucose oxidation. In this review, we will discuss the data supporting the role of reduced liver glucose oxidation in NAFLD pathogenesis and investigate the possibility of specifically targeting pyruvate dehydrogenase (PDH), the enzyme that limits the rate of glucose oxidation in NAFLD. We will also go over possible MOA for how elevated hepatic PDH activity and consequent glucose oxidation might cure the pathophysiology of obesity-induced NAFLD, as well as ways to target this pathway with therapeutic drugs.

Keyworde: Pyruvate dehydrogenase, therapeutic, NAFLD, diabetes mellitus, non-alcoholic fatty liver, oxidation stress

Full Text PDF

Refrences:

  1. Choi CS, Ghoshal P, Srinivasan M, Kim S, Cline G, Patel MS. Liver-specific pyruvate dehydrogenase complex deficiency regulates lipogenesis in adipose tissue and improves peripheral insulin sensitivity. Lipids. 2010;45(11):987–995. doi:10.1007/s11745-010-3470-8.
  2. Guan H, Shao G, Cheng F, Ni P, Wu M. Risk factors of nonalcoholic fatty hepatic disease in healthy women. Med. 2023;102(31):e34437–e34437. doi:10.1097/MD.0000000000034437.
  3. Harris RA, Bowker-Kinley MM, Huang B, Wu P. Regulation of the pyruvate dehydrogenase complex’s activity regulation. Dev Enzyme Manag. 2002;42:249–259. doi:10.1042/BST0340217.
  4. Holness MJ, Sugden MC. Reversible phosphorylation controls the activity of the pyruvate dehydrogenase complex. Trans Biochem Soc. 2003;31(6):1143–1151.
  5. Hwang YC, Ahn HY, Park SW, Park CY. Non-alcoholic fatty liver disease is associated with higher death rates from cancer and overall mortality, cardiovascular disease, and liver disease in women but not men. Clin Gastroenterol Hepatol. 2018;16(7):1131–1137.
  6. Jing E, O’Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Siegfried, et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. 2013;62(10):3404–3417. doi:10.2337/db12-1650.
  7. Liu Y, Zhong GC, Tan HY, Hao FB, Hu JJ. Nonalcoholic fatty liver disease and mortality from all causes, cardiovascular disease, and cancer: a meta-analysis. Sci Rep. 2013;9(1). doi:10.1038/s41598-019-47687-3.
  8. Merritt ME, Harrison C, Sherry AD, Malloy CR, Burgess SC. Hyperpolarized pyruvate carboxykinase and hepatic pyruvate carboxylase flux were observed C magnetic resonance. Natl Acad Sci U.S.A. 2013;108(47):19084–19089.
  9. Park S, Jeon JH, Min BK, Ha CM, Thoudam T, Park BY, et al. Role of the pyruvate dehydrogenase complex in metabolic remodeling: differential pyruvate dehydrogenase complex functions in metabolism. Diabetes Metab J. 2018;42(4):270–281. doi:10.4093/dmj.2018.0101.
  10. Patel MS, Korotchkina LG. Regulation of the pyruvate dehydrogenase complex. Biochem Soc Trans. 2006;34(2):217–222. doi:10.1042/BST0340217.
  11. Roche TE, Hiromasa Y. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci. 2007;64(7-8):830–849. doi:10.1007/s00018-007-6380-z.
  12. Saed CT, Dakhili SAT, Ussher JR. Pyruvate dehydrogenase as a therapeutic target for nonalcoholic fatty liver disease. ACS Pharmacol Transl Sci. 2021;4(2):582–588. doi:10.1021/acsptsci.0c00208.
  13. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–871. doi:1016/j.cell.2012.02.017.
  14. Wang S, Li J, Zhao Y. Construction and analysis of a network of exercise-induced mitochondria-related non-coding RNA in the regulation of diabetic cardiomyopathy. Plos One. 2024;19(3):e0297848–e0297848. doi:10.1371/journal.pone.0297848.
  15. Rector RS, Thyfault JP, Uptergrove GM, Morris EM, Naples SP, Borengasser SJ, et al. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol. 2010;52(5):727–736. doi:10.1016/j.jhep.2009.11.030.
  16. Laura W. Non-alcoholic fatty liver disease (NAFLD): nutrition and lifestyle advice. Network Health Digest. 2017;37.
  17. Rinella ME, Sanyal AJ. Management of NAFLD: a stage-based approach. Nat Rev Gastroenterol Hepatol. 2016;13(4):196–205. doi:10.1038/nrgastro.2016.3.
  18. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: A spectrum of clinical and pathological seventy. Gastroenterol. 1999;116(6):1413–1419. doi:10.1016/S0016-5085(99)70506-8.
  19. Wong RJ, Cheung R, Ahmed A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S. Hepatol. 2014;59(6):2188–2195. doi:10.1002/hep.26986.
  20. Pais R, Charlotte F, Fedchuk L, Bedossa P, Lebray P, Poynard T, et al. Patients with non-alcoholic fatty liver show disease progression, according to a comprehensive assessment of follow-up biopsies. J Hepatol. 2013;59(3):550–556. doi:10.1016/j.jhep.2013.04.027.
  21. McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM. Pairing biopsies provide evidence of NAFLD development from steatosis to fibrosing-steatohepatitis: implications for clinical treatment and prognosis. J Hepatol. 2015;62(5):1148–1155.
  22. McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: Implications for prognosis and clinical management. J Hepatol. 2015;62(5):1140–1145. doi:10.1016/j.jhep.2014.11.034.
  23. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–922. doi:10.1038/s41591-018-0104-9.
  24. Francque SM, Vinker MS, Ungan M, Mendive JM, Lionis C. Non-alcoholic fatty liver disease: A patient guideline. JHEP Rep. 2021;3(5):100322–100322. doi:10.1016/j.jhepr.2021.100322.
  25. Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2020;18(4):223–238. doi:10.1038/s41575-020-00381-6.
  26. Baratta F, Pastori D, Polimeni L, Bucci T, Ceci F, Calabrese C, et al. Non-alcoholic fatty liver disease: effect on insulin resistance. Am J Gastroenterol. 2017;112(12):1832–1839.
  27. Adams LA, Feldstein A, Lindor KD, Angulo P. Nonalcoholic fatty liver disease among patients with hypothalamic and pituitary dysfunction. Gastroenterol. 2004;39(4):909–914. doi:10.1002/hep.20140.
  28. Mofrad P. Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatol. 2003;37(6):1286–1292. doi:10.1053/jhep.2003.50229.
  29. Kim D, Kim WR, Kim HJ, Therneau TM. Association between non-invasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatol. 2013;57(4):1357–1365.
  30. Lim YS, Kim WR. The global impact of hepatic fibrosis and end-stage liver disease. Clin Liver Dis. 2008;12(4):733–746. doi:10.1016/j.cld.2008.07.007.
  31. Savic D, Hodson L, Neubauer S, Pavlides M. The importance of the fatty acid transporter L-carnitine in NAFLD. Nutrients. 2020;12(8):2178. doi:10.3390/nu12082178.
  32. Younossi ZM, Marchesini G, Pinto-Cortez H, Petta S. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: implications for liver transplantation. Transplantation. 2019;103(1):22–27. doi:1097/TP.0000000000002484.
  33. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133–2223. doi:10.1152/physrev.00063.2017.
  34. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nat. 2001;409(6821):729–733. doi:10.1038/35055575.
  35. Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Keach JC, Lafferty HD, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes in patients with nonalcoholic fatty liver disease. 2015;149(2):389–397.e10. doi:10.1053/j.gastro.2015.04.043.
  36. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11(2):191–198. doi:10.1038/nm1185.
  37. Gupta T, Malhotra P. A comprehensive study on interactions between protein molecules and their importance in drug discovery. Res Rev J Drug Formul Dev Prod. 2024;10(3):1–10.
  38. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev. 2005;87(2):507–520. doi:10.1152/physrev.00024.2006.
  39. Day EA, Ford RJ, Steinberg GR. AMPK as a therapeutic objective in the management of metabolic disorders. Endocrinol Metab Trends. 2007;28(8):545–560.
  40. Dakhili SAT, Greenwell AA, Ussher JR. Pyruvate dehydrogenase complex and glucose oxidation as a therapeutic target in diabetic heart disease. J Lipid Atheroscler. 2023;12(1):47–47. doi:10.12997/jla.2023.12.1.47.
  41. Scherer PE, Hill JA. Obesity, diabetes, and cardiovascular diseases. Circ Res. 2016;118(11):1703–1705. doi:10.1161/CIRCRESAHA.116.308999.
  42. Haffner SM, Lehto S, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. J Med. 1998;339(4):229–234. doi:10.1056/NEJM199807233390404.
  43. Petersen MCDF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13(10):572–587. doi:10.1038/nrendo.2017.80.
  44. Ussher JR, Koves TR, Jaswal JS, Zhang L, Ilkayeva O. Insulin-stimulated cardiac glucose oxidation is increased in high-fat diet–induced obese mice lacking malonyl CoA decarboxylase. Diabetes. 2009;58(8):1766–1775. doi:10.2337/db09-0011.
  45. Watt MJ, Dzamko N, Thomas WG, Rose-John S, Ernst M, Carling D, et al. CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat Med. 2006;12(5):541–548. doi:10.1038/nm1383.
  46. Kang HJ, Min BK, Choi WI, Jeon JH, Kim DW, Park S, et al. Pyruvate dehydrogenase kinase 1 and 2 deficiency reduces high-fat diet-induced hypertrophic obesity and inhibits the differentiation of preadipocytes into mature adipocytes. Exp Mol Med. 2021;53(9):1390–1401. doi:10.1038/s12276-021-00672-1.
  47. Lee IK. The role of pyruvate dehydrogenase kinase in diabetes and obesity. Diabetes Metab J. 2014;38(3):181–181.
  48. Wang X, Shen X, Yan Y, Li H. Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications. Biosci Rep. 2021;41(4). doi:10.1042/BSR20204402.
  49. Huang B, Wu P, Bowker-Kinley MM, Harris RA. Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator–activated receptor-α ligands, glucocorticoids, and insulin. Diabetes. 2002;51(2):276–283. doi:10.2337/diabetes.51.2.276.
  50. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W. By activating peroxisome proliferator-activated receptor-retinoid X receptor heterodimers, fatty acids and retinoids regulate lipid metabolism. Proc Natl Acad Sci U.S.A. 1993;90(6):2160–2164.
  51. Malhotra P, Minocha N, Pandey P, Kaushik D, Vashist N. A review on history, chemical constituents, phytochemistry, pharmacological activities, and recent patents of valerian. Nat Prod J. 2024;14(2):98–106. doi:10.2174/2210315514666230718100526.
  52. Berge RK, Aarsland A, Kryvi H, Bremer J, Aarsaether N. Alkylthioacetic acid (3-thia fatty acids) – a new group of non-β-oxidizable, peroxisome-inducing fatty acid analogues. I. A study on the structural requirements for proliferation of peroxisomes and mitochondria in rat liver. Biochim Biophys Acta – Lipids Lipid Metab. 1989;1004(3):345–356. doi:10.1016/0005-2760(89)90083-0.
  53. He Q, Gao Z, Yin J, Zhang J, Yun Z, Ye J. Regulation of HIF-1α activity in adipose tissue by obesity-associated factors: adipogenesis, insulin, and hypoxia. Am J Physiol Endocrinol Metab. 2011;300(5):E877–E885. doi:10.1152/ajpendo.00626.2010.
  54. McCommis KS, Finck BN. Treating hepatic steatosis and fibrosis by modulating mitochondrial pyruvate metabolism. Cell Mol Gastroenterol Hepatol. 2019;7(2):275–284. doi:10.1016/j.jcmgh.2018.09.017.
  55. Zhang M, Zhao Y, Li Z, Wang C. Pyruvate dehydrogenase kinase 4 mediates lipogenesis and contributes to the pathogenesis of nonalcoholic steatohepatitis. Biochem Biophys Res Commun. 2018;495(1):582–586. doi:10.1016/j.bbrc.2017.11.054.
  56. Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu Rev Physiol. 2016;78(1):181–205. doi:10.1146/annurev-physiol-021115-105331.
  57. Seto WK, Yuen MF. Nonalcoholic fatty liver disease in Asia: emerging perspectives. J Gastroenterol. 2016;52(2):164–174. doi:10.1007/s00535-016-1264.
  58. Asrih M, Jornayvaz FR. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? Mol Cell Endocrinol. 2015;418:55–65. doi:10.1016/j.mce.2015.02.018.
>