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Abstract 

There are several difficulties found to estimate the excitation current and optimum input parameters of 

synchronous motors. Heuristic methods are frequently used to weight the problem's parameters or 

optimum coefficients. As a result, a neural network model is modified in this study to explore the best 

parameters and estimate the excitation current of a synchronous motor with minimal prediction errors 

for both the testing dataset and cross validation. Excitation current variations are affected by four input 

factors, including load current, power factor, error, and changes in excitation current, when training 

this model. The experimental results reflect that the proposed neural network predicts the new data set 

effectively as well as enables to predict best weighted value for optimum excitation current of 

synchronous motors. 
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INTRODUCTION 

In this study, synchronous machine saturation is modelled using an innovative feedforward artificial 

neural network technique. The modelling procedure considers the motor locations, excitation levels, 

and machine loading circumstances [1]. By adjusting the synchronous motor's available excitation 

current, the power system can provide the best answer for the need for reactive power. The excitation 

current estimate issue for synchronous motors is addressed in this study using a successful 

implementation of Neural Network [2]. In order to achieve quick reaction and high accuracy 

performances as well as to ensure the system's tolerance to external disturbance and parameter 

uncertainty, this article suggests a unique decoupling strategy for a bearing less permanent-magnet 

synchronous motor. The suggested control strategy uses internal model controllers with two degrees of 

freedom and the neural network inverse methodology [3]. To maintain the smooth and high-quality 

functioning of the synchronous machine itself, it is crucial to continually monitor any potential value 

changes in the excitation current, a crucial parameter of the synchronous machine [4]. The excitation 

current of synchronous motors may be modeled 

simply using this paper adaptive artificial neural 

network-based technique. The network layout is 

straightforward, and there are fewer processing 

units (nodes) than in a traditional ANN. This 

methodology is designed to increase the 

effectiveness of the traditional ANN-based 

approach while estimating the excitation current, 

helping architects easily model excitation current, 

and helping them create complicated driver 

software with little programming work [5]. A 

unique index is presented in this paper for the 

identification of static as well as dynamic 

eccentricity faults in permanent magnet 
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synchronous motors. The classification of the findings shows that the proposed index may be used to 

properly identify the kind, classify, and predict the degree of eccentricity [6]. 

 

LITERATURE REVIEW 

In order to solve problems with parameter weighting and excitation current estimate of synchronous 

motors, the author in [4] presented an innovative and effective technique in this study. Intuitive/heuristic 

methods are frequently used to weight the parameters or look for the best coefficients in issues. Because 

of this, an adaptive algorithm-based k-nearest neighbor estimator (also known as an intuitive k-NN 

estimator or IKE) is modified in this paper to explore the best parameters and produce accurate 

estimations of the excitation current of synchronous motors. Excitation current variations, load current, 

power factor, error, and other motor characteristics are weighted based on their impacts on the excitation 

current. The suggested technique’s estimation results are contrasted with the experimental findings 

using standard deviations from the well-known Neural Network-based method and k-NN-based 

estimator. The outcomes demonstrate that the suggested estimator outperforms the other two well-

known approaches described in the literature in terms of task accomplishment in terms of high 

accuracies, stabilities, robustness, and low error rates [7]. The paper introduced [8] a novel feedforward 

artificial neural network (ANN) model-based method for simulating synchronous generator saturation. 

The modelling technique considers the rotor locations, excitation levels, and machine loading 

circumstances. The ANN model is used to examine the nonlinear saturation properties of a three-phase 

in nature salient-pole synchronous machine. The machines are rated at 5 kVA and 240 V. The on-line 

small-disturbance responses and the well-known maximum-likelihood estimation algorithm are used. 

And the algorithm is used to generate input and output pattern for NN model on an error back-

propagation scheme [8]. The authors in [9] investigated the feasibility of calculating rotor angles for 

use in real-time electric power system transient (angle) stability. The suggested method for estimating 

dynamic state is based on a multilayer perceptron that was trained off-line using simulations and current 

as well as voltage phasors. And it is collected from a phasor measurement unit that is intended to be set 

up on the extra-high voltage side of a power plant substation. They showed that the direct mapping of 

phasor measurement values to generate rotor angle in a neural network is not a good way to achieve 

satisfactory results [9]. Through the presented paper in [10] the authors proposed that a permanent 

magnetic synchronous motor's (PMSM) heat loss and cooling modes have a direct impact on how 

quickly the temperature rises. For PMSMs to operate safely and reliably, stator winding temperature 

must be accurately assessed and predicted. The authors [10] provides a computer model for PMSM 

temperature prediction in order to investigate the elements that affect prevent motor insulation ageing 

and stator winding temperature, permanent magnet demagnetization, insulation burning, and other 

defects brought on by high stator winding temperature. The authors [10] constructed a deep neural 

network model for synchronous machine temperature predictions. This model can efficiently forecast 

the stator winding's temperature change, offers technical assistance to temperature monitoring systems, 

and guarantee the secure functioning of synchronous machines [10]. Through the paper presented in 

[11] the author proposed that, to train the complex feed forward neural network, a set of training data 

is produced from a simulation of the synchronous machine's dynamics. The two structures are 

contrasted. The first structure consists of a three-layer feedforward mechanism network with 10 nodes 

in the hidden layer. The second structure also uses a three-layer feedforward mechanism network, with 

20 nodes in the hidden layer. A step response is simulated on field voltage to the step input. The 

simulation findings demonstrate that artificial neural networks can effectively represent the dynamics 

of synchronous machines, and an increase in the number of undetectable nodes per layer can improve 

the model's accuracy [11]. The methods presented in the article in [12] can be used to estimate and track 

a synchronous generator characteristic from time-domain continuous disturbance data using Neural 

Network (NN) observers. The offline computations of synchronous machines running in a one-machine, 

infinite-bus scenario provide the data needed to train the neural network observers. The machine model 

uses nominal values for parameter values. Following training, the ANN observer is put to the test using 
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simulated online measurements to track simulated adjustments to machine parameters and offers 

estimations of undetectable rotor body currents [12]. 

 

MATERIALS AND METHODS 

The SM used for data collection is given in the section of Materials and Techniques. The input and 

output variables are described along with the dataset. Before using ML algorithms, the input data and 

statistical analysis are presented. The potential difficulties are also mentioned, and the significance of 

implementing AI is stressed [13]. There are numerous losses in SM (iron losses, winding losses, and 

ventilation losses) that add complexity and non-determinism to the machine and demand additional 

power, in addition to the aspects that are overlooked when modeling synchronous machines [14]. 

Naturally, these losses depend on the environment in which the devices are operated, which makes it 

challenging to quantify parameters using conventional monitoring techniques [15]. Synchronous 

machines consist of both synchronous generators and motors. There are various benefits of an AC 

system. As a result, The AC system can generate, transmit and distribute the electric power. The 

synchronous can transform mechanical energy to alternative current. That is why it is also called as 

alternator [16]. In order to identify the excitation current of synchronous machines, neural network 

architecture is utilized. The significant aspects, such as the voltage, power factor of the machine is 

captured by the input layer. The neural network learns to identify patterns in the input data in the hidden 

layers. Depending on how complicated the problem is, both the actual number of layers that are 

concealed and the quantity of neurons in each layer might change. The expected excitation current is 

represented by a single number output layer [17]. 

 

DATASET ANALYSIS 

In this research work, four input parameters are used i.e., 𝐼𝑦 (Load current, The quantity of electrical 

current flowing from a power source to the object or circuit gaining the power), 𝑃𝑓 (power factor), 𝑝𝑓𝑒 

(power factor error) and 𝑑𝑖𝑓 (Change of excitation current of synchronous machine), as presented in 

Figure 1 and output is  𝐼𝑓 (Excitation current of synchronous machine) as shown in Figure 2. In this 

research work, total 171 samples are analyzed. Total 154 samples are train data and total 17 samples 

are tasting data.  

 

Hence, 17 sample train data are calculated and characteristics graph between experimental data and 

calculated output for testing datasets are plotted. 

 

In the Figure 3, characteristics graph between experimental value and calculated values are plotted 

for the testing dataset. And after that, the deviation of experimental data and calculated data is calculated 

(Table 1). And then sum of deviation is required, so, sum of deviation is calculated, and RSME values 

and % error are calculated. 

 

In the Figure 4, characteristics graph for Deviation vs. number of trials in testing datasets are plotted. 

And the minimum value for the deviation is 0.000205191 and the maximum value is 0.004001. Hence, 

the cross validation of the train dataset is calculated (Table 2). The derivation of cross validation data 

is calculated. And then sum of deviation is required so, it is calculated. 

 

 
Figure 1. Basic model of NN for present research. 
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Figure 2. Characteristics graph of train, test and validation dataset 

corresponding to the number of epochs. 
 

 
Figure 3. Characteristics graph between experimental and calculated output for testing datasets. 
 

Table 1. Result obtained after testing validation. 

Result Value 

Sum of deviation 5.51E-05 

RSME value 0.0018 

% error 0.179 

 

 
Figure 4. Characteristics graph for deviation vs. number of trials in testing datasets. 
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Table 2. Result obtained after cross validation. 

Result Value 

Sum of deviation 0.001017 

RSME value 0.00257 

% error 0.257025 

 

Table 3. Result obtained after testing and cross validation. 

Model % Error % Accuracy 

Cross validation 0.257025 99.742975 

Testing model 0.179 99.821 

 

In the Table 3, % error and % accuracy are shown for cross validation and the testing model. For the 

cross validation, the % error and % accuracy are 0.257025 and 99.742975 respectively. For testing 

model, the % error and % accuracy are 0.179 and 99.821 respectively. 

 

The optimum input parameters of the proposed model which have been obtained from simulation are: 

Load is maximum (6 A), Power factor minimum (0.65), error in power factor moderate (0.035) and 

changing of excitation current maximum (0.769 A). 

 

CONCLUSION 

In this study, Neural Network Simulator is used to find out the error between the experimental data 

and the calculated data for a Synchronous Machine. The Sum of deviation, RSME values %error, 

%accuracy are calculated for both Cross Validation as well as Testing models. When looking at the 

results, it is seen that there is an output difference for Experimental output and the calculated output in 

both cases of Testing model and Cross Validation. 

 

To recap and with regards to possible future study objectives, one thing should be kept in mind that 

initially, the supplied dataset must be updated with newer data points, such as load current, power factor 

and power factor error, by modifying the values of these variables. Second, a variety of methods should 

be implemented to identify the error; this is the most effective approach. The dataset will be constructed 

with the best possible solution to forecast the excitation current and parameter weightings of 

synchronous machines using a neural network model if the following points are implemented. 
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