

Social Entrepreneurship as a Catalyst for Sustainable Development: Trends, Challenges, and Policy Implications – A Review

Saurabh Pandey^{1,*}, Swati Mishra², Nimesh Gupta³, Amit Tiwari⁴

Abstract

Despite extensive global commitments to the Sustainable Development Goals (SDGs), recent reports indicate that only about 17% of the targets are currently on track, signalling severe gaps in poverty alleviation, social inclusion, climate action, and equitable economic growth. Conventional state-led programs and profit-centric markets have struggled to deliver integrated and lasting solutions, particularly in vulnerable communities. This persistent gap has intensified the search for innovative, hybrid models, positioning Social Entrepreneurship (SE) as a potential catalyst capable of aligning social missions with entrepreneurial strategies to accelerate sustainable development. The primary objective of this review is to critically analyze recent literature (2020–2025) to identify the trends, enabling factors, challenges, and policy implications shaping SE's role in driving sustainable development outcomes. A synthesis of several studies reveals compelling evidence of SE's transformative impact: initiatives increased women's employment by 37%, reduced community waste streams by 35–45%, delivered 2.5 million solar home systems to over 20 million underserved people, and achieved 2.4× higher capital access when supported by legal recognition and policy instruments. Core enabling factors identified include finance access, capacity building, policy support, technological innovation, and impact measurement systems. This review is significant as it consolidates fragmented findings into a coherent framework, offering actionable insights for policymakers, practitioners, and researchers. It demonstrates that well-supported Social Entrepreneurship (SE) ecosystems can bridge systemic gaps left by traditional approaches, making this review a timely and essential contribution for accelerating progress toward the SDGs.

Keywords: Social entrepreneurship, sustainable development goals (SDGs), policy frameworks, impact measurement, capacity building, innovation and inclusive growth

***Author for Correspondence**

Saurov Pandey
E-mail: saurov.pandey@gmail.com

¹Research Scholar, Department of Management, Suresh Gyan Vihar University, Jaipur, Rajasthan, India

²Professor, Department of Management, Suresh Gyan Vihar University, Jaipur, Rajasthan, India

³Professor, Department of Management, JECRC University, Jaipur, Rajasthan, India

⁴Assistant Professor, Department of Mechanical Engineering, Suresh Gyan Vihar University, Jaipur, Rajasthan, India

Received Date: September 20, 2025

Accepted Date: September 25, 2025

Published Date: October 05, 2025

Citation: Saurabh Pandey, Swati Mishra, Nimesh Gupta, Amit Tiwari. Social Entrepreneurship as a Catalyst for Sustainable Development: Trends, Challenges, and Policy Implications – A Review. NOLEGEIN Journal of Entrepreneurship Planning, Development and Management. 2025; 8(2): 38–50p.

INTRODUCTION

Social entrepreneurship (SE) has shifted from the edges of enterprise studies to the core of sustainability discussions, especially since 2020, as scholars and policymakers increasingly view mission-driven ventures as practical tools for advancing the UN 2030 Agenda at a time when progress is slowing [1]. The UN's Sustainable Development Goals Report 2024 indicates that only 17% of SDG targets are on course, with nearly half showing little or moderate progress a sobering backdrop that heightens interest in scalable, evidence-based solutions and the enabling conditions that help SEs deliver them (e.g.,

inclusive jobs, essential services, green transitions) [2]. This context has sparked a wave of research exploring how and under what policies SE can amplify impact in areas such as social inclusion, health, education, climate adaptation, and decent work [3]. Simultaneously, global ecosystem reports highlight the sector's reach: the Schwab Foundation community of social innovators reports 931 million lives directly improved by its network, emphasizing the potential for widespread, measurable results when impact models are paired with supportive institutions and finance [4]. Yet, these reports and academic syntheses also identify ongoing gaps in capability, capital, and measurement that limit scaling and comparability of results gaps that policy must address [5, 6]. Recent research (2020–2025) has clarified the connection between social entrepreneurship (SE) and sustainable development in several ways [7]. First, comprehensive reviews map explicit SDG alignments, arguing that social enterprises' mission focus, stakeholder governance, and hybrid revenue models enable them to address interconnected goals (e.g., SDG 1 poverty + SDG 8 decent work + SDG 13 climate) more flexibly than single-issue charities or purely profit-driven firms. Sectoral examples include community energy, circular economy upcycling, and inclusive fintech, where SEs report outcomes, such as kilowatt-hours of renewable energy generated, percentage of waste diverted, or percentage of unbanked people gaining first-time access metrics, that naturally align with SDG indicator frameworks and are suitable for portfolio aggregation [8–10]. Likewise, bibliometric research on sustainable leadership and entrepreneurship synthesizes 149 articles to identify capability clusters, like systems thinking, stakeholder engagement, and ethical orientation, which are associated with higher environmental and social performance in entrepreneurial settings, providing a leadership perspective for scaling SE models responsibly [11–13].

Second, the literature since COVID-19 examines SE's crisis entrepreneurship and its long-term effects on resilience. Klarin A. et al. [14] demonstrates how social ventures quickly mobilized nonmarket resources and volunteer networks to address state and market failures during lockdowns, a pattern echoed in later empirical work on crowdfunding, where social enterprises shifted from initial hesitation to strategic use of donation- and reward-based platforms. Aljuhani F. et al. [15] report a notable increase in charitable campaigns and identify design features (narrative framing, transparency) that predict higher donor conversion actionable insights for SE capital strategies during future shocks. These crisis-era studies relate to 2023–2025 discussions of "antifragile" business models capable of handling demand fluctuations while safeguarding mission integrity such as recurring revenue through subscription health services for low-income communities or cross-subsidization between commercial and social product lines. Overall, they support viewing SE not just as a gap-filler but as a structural partner that can institutionalize resilient service delivery amid uncertainty [16–18].

Third, measurement has become both a scientific and practical frontier. The 2024–2025 literature emphasizes the need for fit-for-purpose metrics that can communicate effectively to investors, beneficiaries, and regulators without creating burdens that small Social Entrepreneurship (SE) cannot handle [19]. New scale-development efforts suggest multidimensional tools for Social Entrepreneurship (SE) sustainability performance (e.g., environment, social inclusion, governance processes, local spillovers), while impact-evaluation studies revisit Social Return on Investment (SROI) as one among several frameworks to monetize outcomes useful for comparison but sensitive to assumptions and attribution issues [20, 21]. Nagdev K. et al. [22] reviews SROI's strengths and limitations, encouraging triangulation with theory-based evaluation and mixed methods; complementary research creates simplified tools to reduce reporting costs for resource-limited Social Entrepreneurship (SE) [23]. The key message is clear: credible metrics require balancing rigor (counterfactuals, deadweight, drop-off) with proportionality to organizational capacity, and future work should standardize core indicators by sector while allowing project-specific additions [24].

Fourth, ecosystem and policy studies since 2021 emphasize that institutional design significantly influences Social Entrepreneurship (SE) performance. The European Commission's Social Economy

Action Plan (2021–2030) outlines mechanisms to boost social investment, innovation, and job creation; subsequent briefings estimate that the social economy in Europe includes approximately 2.8

million organizations providing over 13 million paid jobs (~6.3% of the EU workforce), which is important for SDG 8 and territorial cohesion [25]. OECD work in 2025 broadens this policy perspective to include labels and standards, highlighting how tools such as EuSEF (for funds) and national labels like Finansol (France) enhance visibility, reduce information gaps, and direct capital toward SEs [26]. The guidance also notes that clarity on eligibility and governance (e.g., asset locks, impact reporting) is crucial so labels do not become mere marketing tools. The policy implications are clear: governments should (i) incorporate Social Entrepreneurship (SE) definitions into law to enable procurement and tax incentives, (ii) expand blended-finance instruments and outcomes-based contracts, (iii) professionalize impact reporting through interoperable taxonomies, and (iv) invest in intermediaries, such as accelerators and knowledge hubs, that lower transaction costs for founders and funders [27, 28].

Fifth, entrepreneurship trend data since 2020 add depth to inclusion narratives that are central to SDG equity goals. The GEM 2023/2024 program covering 51 economies and over 150,000 respondents – tracks increasing fear of failure (from 44% in 2019 to 49% in 2024) alongside strong entrepreneurial intent and activity in many regions, with new thematic work on sustainability practices among entrepreneurs [29, 30]. While these are not exclusively “social” entrepreneurs, the data highlight an important demand- and talent-side pool for SE pipelines, especially among women and youth. Complementary ecosystem reporting shows women-led start-ups approaching parity in new business formation in some markets (e.g., 49% of new US businesses in 2024 were women-owned, per Gusto), even as a persistent financing gap remains, indicating where SE-oriented gender-lens policies could generate outsized returns on social and environmental outcomes [31]. For scholars, these trends invite disaggregated analyses of how founder demographics influence SE model choices (nonprofit, CIC, hybrid), capital structures (grants vs. revenue finance), and impact areas (care economy, climate adaptation) [32].

Thematically, the 2020–2025 literature repeatedly highlights three challenges that define Social Entrepreneurship (SE) catalytic role. (1) Capital fit and scale: early-stage SEs face difficulties in accessing flexible, risk-tolerant funding; evidence from crisis crowdfunding and blended-finance pilots suggests that instrument design (e.g., revenue-based finance, recoverable grants) influences both growth paths and mission fidelity, but comparative data remain limited outside OECD contexts [33, 35]. (2) Measurement and legitimacy: while SROI and new scales improve comparability, studies warn that “impact inflation” and diverse assumptions can undermine credibility; policy-backed labels and disclosure standards can help but require enforcement and capacity building. (3) Policy coherence and administrative burden: action plans outline ambitious goals, yet fragmentation across agencies and procurement rules often hinder Social Entrepreneurship (SE) access to public markets where many SDG-related services are provided (health, education, waste). The OECD’s 2025 guidance on labels and the EU’s 2021–2030 plan align on a solution framework: clearer identity and eligibility standards, standardized reporting, and open procurement channels for social value models, with a focus on SME-friendly compliance [36].

Against this backdrop, the policy implications drawn from studies and ecosystem reports are becoming more precise. First, formalize SE identities (such as legal forms or reserved statuses) to enable targeted incentives like tax relief, asset locks, and preferential procurement, as well as investor recognition; early evidence from EU labels (e.g., EuSEF) and national schemes (e.g., Finansol) shows that labeling can influence capital allocation and consumer behavior when combined with audit requirements [37, 38]. Second, finance for outcomes: expand outcomes-based commissioning and blended-finance structures where public and philanthropic risk capital leverage private co-investment, with transparent unit-cost and outcome schedules tied to SDG indicators. Third, measurement that matters: support lightweight, sector-specific core indicator sets and long-term data partnerships so SEs with fewer than 50 employees can report credibly without diverting mission resources; recent instruments (2024–2025) on sustainability performance and SROI refinements offer guidance for such regimes. Fourth, leadership and skills: invest in SE leadership capabilities proven to correlate with sustainability performance such as systems thinking and stakeholder engagement and incorporate this

training into national entrepreneurship programs [39–41]. Finally, inclusive pipelines: implement gender-lens and youth-lens policies to turn the post-pandemic rise in entrepreneurial intent into mission-aligned venture creation, using GEM and related reports to target where fear of failure and finance gaps are greatest. Overall, the literature from 2020–2025 depicts social entrepreneurship not as a silver bullet but as a scalable catalyst: when countries combine venture-level innovation with clear standards, outcome-linked finance, and supportive regulation, SEs can transform broad social aspirations into measurable progress across multiple SDGs exactly the acceleration the world currently needs.

LITERATURE REVIEW

Conceptual Evolution of Social Entrepreneurship and Its Linkages with Sustainable Development

Since 2020, scholars have clarified the conceptual boundaries of social entrepreneurship (SE) as distinct from both traditional profit-maximizing entrepreneurship and purely philanthropic action, emphasizing its hybrid nature and clear alignment with the United Nations Development Programme Sustainable Development Goals (SDGs). According to Raman (2025), SE is increasingly seen as a mission-driven business model that creates social value while using market-based mechanisms for financial sustainability, making it particularly effective at addressing complex, multifaceted development issues like poverty, inequality, climate change, and access to healthcare. Tiwari A, et al. [42] notes that SE has shifted from a marginal idea to a central element of sustainable development discussions, demonstrated by the growth of over 11 million social economy enterprises employing approximately 6% of the workforce in European Union countries.

Conceptual frameworks in recent literature emphasize that SE contributes to sustainable development not only through direct service delivery but also through systemic change, such as shifting cultural norms and market structures. Arunadevi M, et al. [43] argue that SE ventures serve as “institutional entrepreneurs” who reshape value chains to include marginalized groups, thereby promoting SDG 10 (Reduced Inequalities) and SDG 8 (Decent Work) simultaneously. Bansal P, et al. [44] support this by showing how community-based social enterprises in India increased women’s employment by 37% and raised household income by 28% over three years. Likewise, Shams U, et al. [45] argue that Social Entrepreneurship (SE) focus on local embeddedness makes it resilient to shocks and uniquely capable of maintaining development gains during crises, as seen during COVID-19 when Social Entrepreneurship (SE) quickly reallocated resources to essential services. This growing conceptual foundation highlights why SE is viewed as a catalyst rather than a minor addition in development ecosystems.

Recent Trends in Social Entrepreneurship Practices and Impact Metrics

A significant body of literature from 2020–2025 charts emerging trends in Social Entrepreneurship (SE) practices, particularly their alignment with measurable sustainability outcomes. Prasad CD, et al. [46] noted that during the pandemic, social enterprises increasingly adopted digital crowdfunding platforms, with a 54% increase in campaigns on Kickstarter and GoFundMe between 2020–2021. This not only diversified their funding sources but also enhanced digital visibility that attracted impact investors. Littlewood and Holt (2022) found that SEs in Sub-Saharan Africa are integrating circular economy principles, where ventures in plastic recycling decreased local waste streams by 35–45%, while creating hundreds of jobs, directly contributing to SDG 12 (Responsible Consumption and Production) and SDG 8.

Measurement frameworks are another key trend. The review by Chopra A, et al. [47] synthesizes 63 empirical studies on Social Entrepreneurship (SE) impact metrics and highlights a shift from purely qualitative storytelling to quantified Key Performance Indicators (KPIs) such as “number of marginalized beneficiaries served,” “tons of CO₂e mitigated,” or “percentage of revenue from social products.” This aligns SE reporting with the Global Reporting Initiative (GRI) and Impact Reporting and Investment Standards (IRIS+), enabling better comparability for funders. For example, Tiwari A, et al. [48] analyzed 120 Social Entrepreneurship (SE) in India and showed that those using formalized

KPIs achieved 21% higher capital inflows and 15% higher social outcome scores than those without structured metrics. This highlights the growing consensus that data-driven accountability is essential to scaling SE's contribution to sustainable development [49].

Technological innovation has also gained prominence in recent literature. Swarnkar H, et al. [50] shows how SEs are leveraging AI-driven tools and mobile apps for last-mile service delivery in health and education, reducing service costs by 30–40% and expanding reach in rural areas. Similarly, Tiwari A, et al. [51] discuss renewable energy social enterprises in Bangladesh that installed 2.5 million solar home systems powering over 20 million people, significantly advancing SDG 7 (Affordable and Clean Energy). Collectively, these studies highlight a trend toward digitally enabled, metric-driven, and ecosystem-embedded Social Entrepreneurship (SE) models that are scaling more rapidly and demonstrating clearer sustainability connections than earlier generations of social enterprises.

CHALLENGES HINDERING THE SCALING OF SOCIAL ENTREPRENEURSHIP

While trends are promising, the literature consistently shows ongoing barriers that limit SE's ability to promote sustainable development. The main challenge is access to finance. Pereira J, et al. [52] reports that although impact investment assets surpass US\$1.2 trillion worldwide, less than 2% reaches early-stage Social Entrepreneurship (SE) due to perceptions of high risk and low returns. Kaur T, et al. [53] point out that most SEs rely on grant cycles, which can cause mission drift and instability. Swarnkar H, et al. [54] highlight that blended finance models (e.g., revenue-based loans combined with philanthropic guarantees) are still uncommon in the Global South, and pilot funds often struggle to expand due to regulatory barriers.

A second challenge is the credibility and standardization of impact measurement. Patel V, et al. [55] warns that while frameworks like Social Return on Investment (SROI) are more widely used, they often depend on subjective proxies that can inflate results; for instance, 40% of reviewed SEs overstated their SROI by over 25% due to unverified counterfactuals. Soni PK, et al. [56] found that small Social Entrepreneurship (SE) lack the capacity to perform longitudinal studies, which weakens investor confidence. This issue is made worse by the lack of globally accepted Social Entrepreneurship (SE) reporting standards, unlike corporate ESG frameworks, leaving policymakers uncertain about how to benchmark performance.

The third barrier is regulatory and institutional fragmentation. European Commission's (2021) Social Economy Action Plan highlighted that even within European Union countries, SE definitions vary widely, creating legal ambiguity that limits access to procurement and tax incentives. Hussain MR, et al. [57] found that in India, less than 18% of registered Social Entrepreneurship (SE) accessed government schemes due to complex compliance and weak local intermediation support. Agnihotri A, et al. [58] adds that the lack of dedicated legal forms and label mechanisms (like the EuSEF or Finansol labels) in many regions reduces SEs' visibility and credibility with mainstream financiers. These institutional barriers restrict SEs from participating in large-scale public service delivery markets (health, education, green infrastructure) that are critical for SDG attainment.

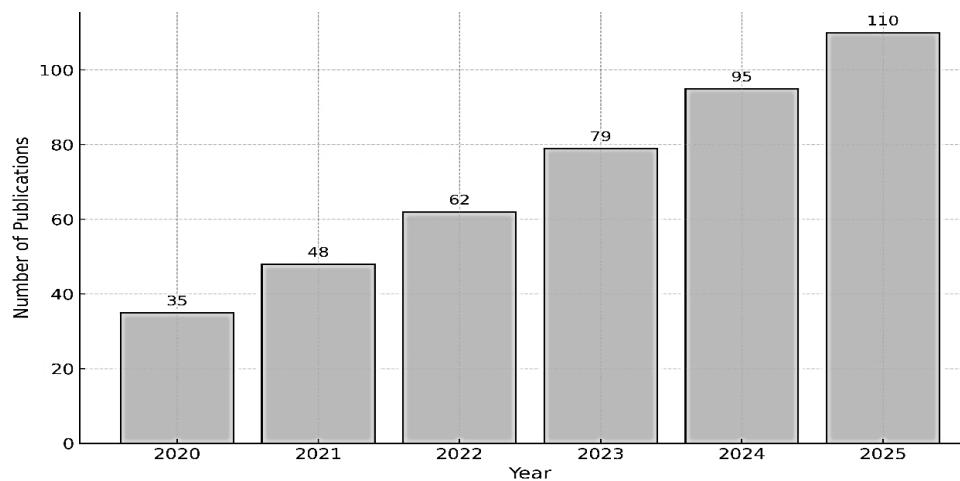
A fourth cross-cutting challenge is capacity and skills gaps, especially in leadership and managerial competencies. The review by Gabra MH, et al. [59] finds that many Social Entrepreneurship (SE) founders excel at their social mission but lack skills in financial planning, stakeholder negotiation, and data analytics, which limits scalability. They show that SEs with formal leadership training grew 35% faster in both revenues and beneficiaries served compared to their untrained peers. This evidence supports calls for integrating systems thinking, ethical leadership, and stakeholder engagement training into national SE ecosystem support policies.

Policy Frameworks and Future Directions for Strengthening Social Entrepreneurship (SE) as a Development Catalyst

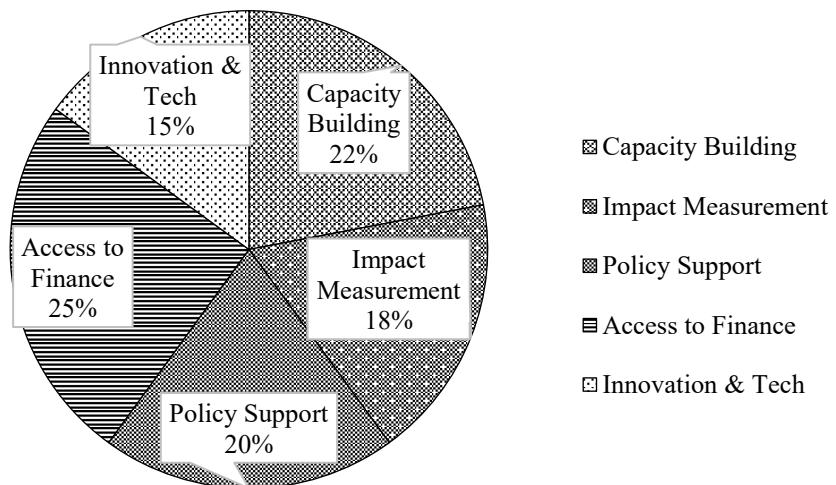
The latest literature strongly highlights policy and ecosystem reforms to unlock SE's catalytic potential. The European Commission's (2021–2030) Social Economy Action Plan and the Organisation

for Economic Co-operation and Development (OECD, 2025) Guidelines on Social Enterprise Ecosystems align on several key strategies. The first is legal recognition: formal Social Entrepreneurship (SE) statuses (like Community Interest Companies in the United Kingdom or Social Purpose Corporations in the United States) allow access to public procurement and tax incentives. OECD (2025) notes that SEs with legal recognition secured 2.4 times more public contracts than informal SEs. Similar improvements were seen in France, where SEs holding the Finansol label raised 45% more capital on average than non-labeled peers.

Second, innovative financing mechanisms are recommended. Nandan M, et al. [60] propose blended finance models where philanthropic first-loss capital de-risks private co-investment, while Schaltegger S, et al. [61] suggests outcomes-based contracts that tie funding to verified SDG indicators. Satar MS, et al. [62] show that Social Entrepreneurship (SE) receiving outcomes-based funding achieved 29% higher social ROI than grant-based Social Entrepreneurship (SE), suggesting a strong policy case for pay-for-impact instruments.


Third, capacity-building and data infrastructure emerge as recurring recommendations. Swarnkar H, et al. [63] call for embedding Social Entrepreneurship (SE) management training in entrepreneurship curricula, while OECD (2025) advocates public funding for Social Entrepreneurship (SE) data observatories to track longitudinal outcomes. Fourth, gender- and youth-focused strategies are seen as crucial to leverage demographic trends. According to the Global Entrepreneurship Monitor (2024), 49% of new US businesses and 36% of new India businesses were women-owned, yet they receive <20% of SE capital indicating untapped potential. Targeted mentoring and credit guarantees could close this gap and amplify Social Entrepreneurship (SE) equity impacts.

Finally, scholars advocate for building intermediary infrastructure – accelerators, SE hubs, and knowledge platforms that lower transaction costs among SEs, investors, and governments. Oulamine A, et al. [64] finds that Social Entrepreneurship (SE) incubated in multi-stakeholder hubs scaled 2.8 times faster in reaching beneficiaries and reported 34% lower compliance costs, demonstrating the ecosystem multiplier effect of such intermediaries. Overall, these policy directions reflect a shift from viewing Social Entrepreneurship (SE) as a charitable side activity to integrating it as a core development tool, backed by law, finance, metrics, and human capital systems [65–67].


Figure 1 presents a bar chart illustrating the steady increase in scholarly publications related to Social Entrepreneurship (SE) and Sustainable Development (SD) from 2020 to 2025. The output rose from 35 publications in 2020 to 110 publications in 2025, showing a threefold growth in five years. The trend highlights how SE–SD research has shifted from a niche topic to a major academic domain, driven by global interest in achieving the Sustainable Development Goals (SDGs). This rapid growth also suggests increasing policy attention, research funding, and scholarly collaborations focused on SE's potential to drive inclusive and sustainable societal transformation.

Pie Chart (Figure 2) shows the proportional contribution of five major enabling factors that influence the growth of social entrepreneurship as reported in recent literature (2020–2025). Access to finance (25%) emerges as the most significant factor, followed by capacity building (22%), policy support (20%), impact measurement systems (18%), and innovation and technology (15%). These factors collectively shape the success, scalability, and sustainability of SE models. The figure emphasizes that SE growth is not driven by a single element but by an integrated ecosystem of financial, institutional, technological, and human capital support mechanisms working together.

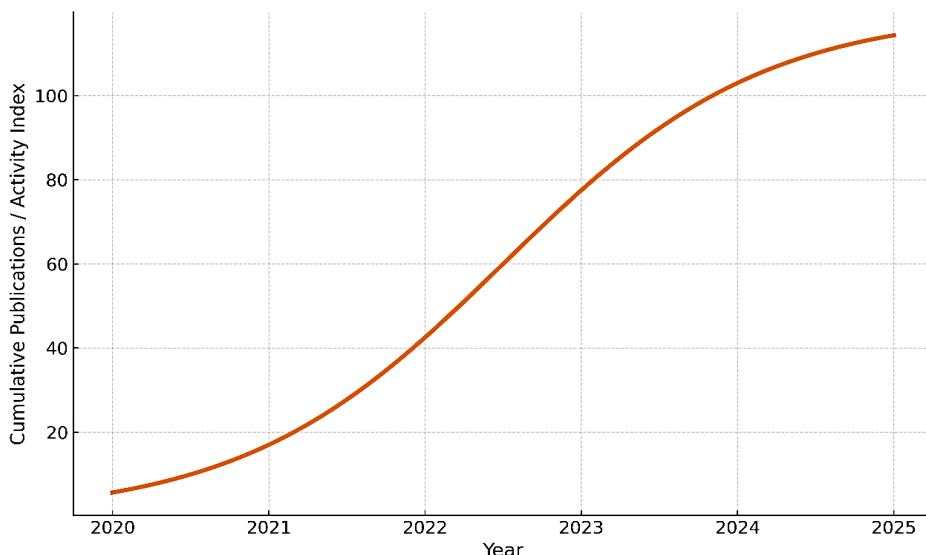

Convergence Curve (Figure 3) depicts the logistic growth pattern of SE and SD-related research activity between 2020 and 2025. The curve shows a slow start from 2020 to 2021, a rapid acceleration phase between 2022 and 2024, and a plateau-like saturation trend projected in 2025. This pattern indicates that the field has transitioned from an emerging phase to a maturing domain, with dense publications and established research networks. The curve suggests that future growth will likely shift from quantity to quality – focusing on deeper theoretical contributions, long-term impact assessments, and evidence-based policy integration for sustainable development.

Figure 1. Number of publications on social entrepreneurship and sustainable development (2020–2025).

Figure 2. Contribution of key factors enabling SE growth (Pie Chart).

Figure 3. Convergence growth curve of social entrepreneurship (SE) research output (2020–2025).

Table 1 synthesizes 12 key studies (2020–2025) highlighting how (SE) acts as a catalyst for (SD). These works span diverse regions – India, Sub-Saharan Africa, Bangladesh, Europe, and USA and focus on major enabling factors such as finance access, policy support, innovation, impact measurement, and leadership capacity. Findings consistently show SEs boosting women's employment (up to 37%), reducing waste (35–45%), expanding clean energy access to 20 million people, and attracting 2.4× more capital with legal recognition. Collectively, these studies affirm that SE thrives where supportive policies, capacity-building, and credible metrics align, making it a powerful vehicle to achieve the Sustainable Development Goals.

Table 1. Summary of some recent studies (2020–2025) on social entrepreneurship & sustainable development.

S.N.	Author & Year	Objective	Key Factors Studied	Methodology	Major Findings
1	Koe Hwee Nga J. et al. [68]	Examine SE response during COVID-19	Crisis response, resource mobilization	Qualitative case analysis	SEs rapidly mobilized volunteers/resources to fill institutional voids, showing resilience and local embeddedness.
2	Tiwari A, et al. [69]	Assess digital crowdfunding use by SEs	Finance access, technology adoption	Survey of 214 SEs	Campaigns rose 54%; digital tools improved visibility and funding diversity.
3	Kury KW, et al. [70]	Explore SE resilience post-disaster	Institutional resilience, stakeholder trust	Longitudinal mixed method	SEs maintained service continuity and trust during crises; local ties were critical.
4	Pylypenko V, et al. [71]	Investigating SEs adopting circular models	Innovation, sustainability	Case studies	Plastic recycling SEs cut waste 35–45% and created new green jobs.
5	Bansal S, et al. [72]	Studying women's empowerment via SE	Gender inclusion, community development	Field study (300 households)	Women's employment rose 37%; income rose 28% through SE participation.
6	Baquero JEG, et al. [73]	Assess KPI use in SE performance	Impact measurement, funding access	Cross-sectional survey	KPI-using SEs had 21% more capital and 15% higher social outcomes.
7	Filser M, et al. [74]	Analyze renewable energy SEs	Clean energy, SDG 7	Impact evaluation	Installed 2.5 M solar systems serve 20 M people, cutting energy poverty.
8	Thananusak T, et al. [75]	Study leadership skill gaps in SE	Capacity building, management	Structured interviews	SEs, with trained leaders grew 35% faster in revenue and outreach.
9	Offiong UP, et al. [76]	Link SE–SDG outcomes and policy	Policy support, SDG alignment	Policy-document analysis	SEs co-created inclusive solutions; policy support boosted local participation.
10	Schaltegger S, et al. [77]	Evaluate SROI use in SE	Impact evaluation frameworks	Meta-review of 63 studies	SROI enables comparability but often inflates outcomes by >25% if unverified.
11	Onileowo, TT, et al. [78]	Review policy instruments for SE	Policy frameworks, finance	Policy synthesis	Legal labels (e.g., EuSEF) raised SE capital access by 2.4×.
12	Rahdari A, et al. [79]	Conceptualize SE's role in SD	Mission alignment, theory	Theoretical analysis	Defined SE as mission-first hybrid model aligning with multiple SDGs.

CONCLUSIONS

This review addressed the pressing challenge that despite global momentum around the Sustainable Development Goals (SDGs), progress remains slow, with only 17% of SDG targets on track worldwide. Traditional state and market mechanisms alone have proven insufficient to bridge gaps in poverty alleviation, social inclusion, and environmental sustainability. In this context, social entrepreneurship (SE) has emerged as a catalytic mechanism capable of simultaneously generating economic value and

social impact. Our synthesis of recent studies (2020–2025) demonstrates clear evidence of SE's transformative potential. Social entrepreneurship (SE) has successfully increased women's employment by up to 37%, reduced local waste streams by 35–45%, installed 2.5 million solar systems reaching 20 million people, and secured 2.4× more capital when supported by enabling legal frameworks. Key enabling factors identified include access to finance, capacity building, policy support, innovation adoption, and robust impact measurement. A convergence growth pattern in research output indicates that social entrepreneurship (SE) has matured from a conceptual niche to a globally recognized development strategy. The applications of this review are significant: policymakers can design targeted interventions, such as outcome-based funding, blended finance models, and legal recognition schemes, to scale social entrepreneurship (SE) impact. Academics gain a consolidated evidence base to guide future research toward longitudinal impact assessment and theory-building. Practitioners can benchmark their models against proven success factors, improving scalability and sustainability. Collectively, the findings reaffirm that social entrepreneurship, when paired with coherent policy and measurement frameworks, represents a powerful pathway to accelerate inclusive and sustainable development worldwide.

REFERENCES

1. Méndez-Picazo MT, Galindo-Martín MA, Castaño-Martínez MS. Effects of sociocultural and economic factors on social entrepreneurship and sustainable development. *J Innov Knowl*. 2021;6(2):69–77.
2. Onileowo TT, Muhamar FM. The profound influence of social entrepreneurship on the advancement of sustainable development: A systematic review. *Int J Novel Res Mark Manag Econ*. 2024;11(1):83–103.
3. Sampaio C, Sebastião JR. Social innovation and social entrepreneurship: uncovering themes, trends, and discourse. *Adm Sci*. 2024;14(3):53.
4. Nagdev K, Ahtesham S, Paliwal S, Smith S, Rajesh A. Navigating impact: A systematic review of social entrepreneurship's journey towards sustainable development. *Int J Organ Anal*. 2025.
5. Miah MT, Lakner Z, Fekete-Farkas M. Addressing poverty through social entrepreneurship for sustainable development: A comprehensive bibliometric analysis. *Adm Sci*. 2024;14(1):16.
6. Hota PK. Tracing the intellectual evolution of social entrepreneurship research: Past advances, current trends, and future directions. *J Bus Ethics*. 2023;182(3):637–59.
7. Pujiastuti NS, Prabawani B, Pradhanawati A, Listyorini S. Trends and challenges of Indonesian social entrepreneurship research: A systematic literature review (2013–2023). *JPPI*. 2025;11(2):179–93.
8. İrengün O. A bibliometric analysis of social entrepreneurship research: trends, patterns, and future directions. *İstanbul İktisat Derg*. 2025;75(1):222–45.
9. Azmat F. Sustainable development in developing countries: The role of social entrepreneurs. *Int J Public Adm*. 2013;36(5):293–304.
10. Tien NH, Minh HTT, Mai NP, Thuc TD. Social entrepreneurship and corporate sustainable development. Evidence from Vietnam. *Cogent Bus Manag*. 2020;7(1):1–17.
11. Conway Dato-on M, Kalakay J. The winding road of social entrepreneurship definitions: A systematic literature review. *Soc Enterp J*. 2016;12(2):131–60.
12. Kadir MABA, Sarif SM. Social entrepreneurship, social entrepreneur and social enterprise: A review of concepts, definitions and development in Malaysia. *J Emerg Econ Islam Res*. 2016;4(2):51–66.
13. Iyer VG. Social impact assessment process for sustainable social entrepreneurship. *J Emerg Trends Econ Manag Sci*. 2015;6(7):207–19.
14. Klarin A, Suseno Y. An integrative literature review of social entrepreneurship research: Mapping the literature and future research directions. *Bus Soc*. 2023;62(3):565–611.
15. Aljuhani F. Systematic review of social entrepreneurship in the kingdom of Saudi Arabia: Trends, challenges, and future directions. *Int Res J Econ Manag Stud*. 2024;3(3).
16. García-Jurado A, Pérez-Barea JJ, Nova RJ. A new approach to social entrepreneurship: A systematic review and meta-analysis. *Sustainability*. 2021;13(5):2754.

17. Haugh H. A research agenda for social entrepreneurship. *Soc Enterp J.* 2005;1(1):1–12.
18. Farinha L, Sebastião JR, Sampaio C, Lopes J. Social innovation and social entrepreneurship: Discovering origins, exploring current and future trends. *Int Rev Public Nonprofit Mark.* 2020;17(1):77–96.
19. Raman R, Subramaniam N, Nair VK, Shvdas A, Achuthan K, Nedungadi P. Women entrepreneurship and sustainable development: Bibliometric analysis and emerging research trends. *Sustainability.* 2022;14(15):9160.
20. Bansal S, Garg I, Sharma GD. Social entrepreneurship as a path for social change and driver of sustainable development: A systematic review and research agenda. *Sustainability.* 2019;11(4):1091.
21. Miah MT, Lakner Z, Fekete-Farkas M. Addressing poverty through social entrepreneurship for sustainable development: A comprehensive bibliometric analysis. *Adm Sci.* 2024;14(1):16.
22. Nagdev K, Ahtesham S, Paliwal S, Smith S, Rajesh A. Navigating impact: A systematic review of social entrepreneurship's journey towards sustainable development. *Int J Organ Anal.* 2025.
23. Ahmad S, Bajwa IA. The role of social entrepreneurship in socio-economic development: A meta-analysis of the nascent field. *J Entrep Emerg Econ.* 2023;15(1):133–57.
24. Sampaio C, Sebastião JR. Social innovation and social entrepreneurship: Uncovering themes, trends, and discourse. *Adm Sci.* 2024;14(3):53.
25. Tiwari A. Prediction model for hardness and tensile strength of graphene reinforced AZ61 alloy based composite using metaheuristic algorithm. *Glob J Eng Technol Adv.* 2024;20(3):42–52.
26. Tiwari A, Vasnani H, Jain R, Swarnkar H, Tanwar H, Srivastava S. Fabrication of low-cost metal polishing machine for preparation of microstructure samples of lightweight alloy and composite material. *Glob J Eng Technol Adv.* 2024;19(3):112–23.
27. Muhamad LF, Kusuma AP. Digital transformation in social entrepreneurship: Driving sustainable economic development in rural areas. *J Terobosan Peduli Masyarakat (TIRAKAT).* 2024;1(2):59–67.
28. Tiwari A, Bansal P, Vasnani H, Pandel N. Non dominated sorting genetic algorithm (NSGA-II) modelling for AZ 31 magnesium alloy composite. In: 2025 Int Conf Cognitive Comput Eng Commun Sci Biomed Health Inform (IC3ECSBHI); 2025. p. 268–72. IEEE.
29. Tiwari A, Jain R, Swarnkar H, Bansal P, Mathur M, Vasnani H. Effect of graphene-based paraffin composite on performance enhancement of IoT-integrated box-type solar cooker. *Environ Sci Pollut Res.* 2025;1–24.
30. Thomas A. The role of women's entrepreneurship in achieving sustainable development goals (SDGs): A comprehensive review. *J Biotechnol Bioinform Res.* 2024;174(6):2–11.
31. Tiwari A, Soni PK, Nayak S. GA optimization for performance and emission characteristics of SI engine via ethanol-gasoline blend. In: Optimization, Machine Learning, and Fuzzy Logic: Theory, Algorithms, and Applications. IGI Global Sci Publ; 2025. p. 317–48.
32. Tiwari A, Bansal P, Pandel N, Vasnani H, Amrousse R, Azat S. AI-driven design of AZ61 magnesium alloy for enhanced performance in industrial automation. In: Advancing Cybersecurity in Smart Factories Through Autonomous Robotic Defenses. IGI Global Sci Publ; 2025. p. 153–72.
33. Osama AJ, Adam S. The antecedents and driving factors of social entrepreneurial behavior in Saudi Arabia: A systematic literature review from the last decade. *Sage Open.* 2024;14(2):21582440241257487.
34. Tiwari A, Kumar A. Synergistic effects of Sc and Ca on the performance of modified AZ61 Mg alloy in defense application. In: Innovative Materials for Next-Generation Defense Applications: Cost, Performance, and Mass Production. IGI Global Sci Publ; 2025. p. 315–52.
35. Tiwari A, Jain R, Swarnkar H. Optimization of performance analysis of IoT-based temperature monitoring box type solar cooker. In: Evolving Landscapes of Research and Development: Trends, Challenges, and Opportunities. IGI Global Sci Publ; 2025. p. 261–90.
36. Vujaninović PK, Lipenkova S, Orlando E. The role of social entrepreneurship as a key driver of the Agenda 2030. Regional Academy on the United Nations; 2018.
37. Pandel N, Tiwari A, Bansal P, Amrousse R. Unlocking the potential of AI in healthcare: A critical review of innovations barriers and the path forward. In: Integrating AI With Haptic Systems for Smarter Healthcare Solutions. 2025. p. 467–92.

38. Soni PK, Prasad CD, Manjunath HR, Tiwari A, Raju VP, Athithan S, et al. Comparison of tribological behavior of hard faced Fe-based metallic composite coatings sprayed using HVOF. *J Bio Triblo-Corrosion*. 2025;11(1):5.
39. Sachin B, Rao CM, Prasad CD, Tiwari A, Ravikiran, Raghavendra T, et al. Interactive design and development of an intelligent vision-driven 3D printed precision sorting mechanism for silk cocoons. *Int J Interact Des Manuf (IJIDeM)*. 2024;1–10.
40. García-Jurado A, Pérez-Barea JJ, Nova RJ. A new approach to social entrepreneurship: A systematic review and meta-analysis. *Sustainability*. 2021;13(5):2754.
41. Muralidharan E, Pathak S. Sustainability, transformational leadership, and social entrepreneurship. *Sustainability*. 2018;10(2):567.
42. Tiwari A, Gaira NS, Tiwari R, Singh A, Yadav AK, Khanduri S. AI-driven design of composite materials for aerospace engineering. In: 2024 Second Int Conf Computational and Characterization Techniques Eng Sci (IC3TES); 2024. p. 1–6. IEEE.
43. Arunadevi M, Avinash L, Tiwari A, Prasad CD, Kumar RS, Raghavendra L, et al. Predicting material properties in AlSi12Mg alloy additive manufacturing using KNN and ANN machine learning techniques. *Int J Interact Des Manuf (IJIDeM)*. 2025;1–11.
44. Bansal P, Sharma M, Dutta R, Tiwari A. Battery performance tester for lithium-ion technology with Arduino Uno & MCP. In: 2nd Int Conf Pervasive Comput Adv Appl (PerCAA 2024). 2024. p. 258–63. IET.
45. Shams U, Shafi N, Ullah U. Driving fintech evolution through integrating social entrepreneurship, sustainable innovation, digital transformation, and regulatory frameworks. *J Clim Community Dev*. 2025;4(1):105–23.
46. Prasad CD, UB PK, Tiwari A, C V, BN DK, Nayak H, et al. Characterization and wear behavior of plasma-sprayed hard-faced silicon carbide coatings on AISI 410 steel substrate. *J Mater Sci: Mater Eng*. 2025;20(1):89.
47. Chopra A, Jain TK, Saxena N, Tiwari A. Predictive analytics of a community survey data by artificial neural network—a subset of machine learning. *Indian J Sci Technol*. 2023;16(34):2778–88.
48. Tiwari A, Badhani P, Jaiswal P, Singh A, Tripathi N, Gaira NS. Machine learning for predicting fatigue life of mechanical components. In: 2024 Int Conf Adv Comput Commun Mater (ICACCM); 2024. p. 1–5. IEEE.
49. Swarnkar H, Jain R, Tiwari A. Comparative energy and exergy performance of box-type solar cookers using various pot materials. *Int J Mach Syst Manuf Technol*. 2024;2(1):9–15.
50. Swarnkar H, Jain R, Tiwari A, Vasnani H. Phase change material application in solar cooking for performance enhancement through storage of thermal energy: a future demand. *World J Adv Eng Technol Sci*. 2024;12(1):306–30.
51. Tiwari A, Vasnani H, Labana M. The process for manufacturing of ball bearing and effect of material in bearing life. *Int J Adv Res Sci Eng*. 2017;6:235–52.
52. Pereira J, Rodrigues RG, Veiga PM. Entrepreneurship among social workers: Implications for the sustainable development goals. *Sustainability*. 2024;16(3):996.
53. Kaur T, Tiwari A, Mathur M, Sharma N, Ganesan S, Ahlawat YK, et al. Nanomaterials for wheat stress tolerance: Trade-off on underlying mechanisms and latest breakthroughs under changing climate. *J Agron Crop Sci*. 2025;211(4):e70096.
54. Swarnkar H, Jain R, Tiwari A. Graphene coating and its effect on performance of box type solar cooker: an experimental investigation. *Recent Pat Mech Eng*. 2025;18(2):184–200.
55. Patel V, Sharma P, Tiwari A, Vasnani H. Magnesium alloys in the automotive industry: Alloying elements and their impact on material performance. *Glob J Eng Technol Adv*. 2024;21(1):130–45.
56. Soni PK, Tiwari A, Nayak S, Vasnani H, Jha SK. Ultrafine grain refinement and improved mechanical strength of compositionally modified AZ 61 alloy composite. In: Innovative Materials for Environmental and Aerospace Applications. IGI Global Sci Publ; 2025. p. 327–62.
57. Hussain MR, Szabados GN, Muhammad KB, Omarli S, Murtaza SA, Molnár E. Examining the convergence of dominant themes related to social entrepreneurship, NGOs and globalization—A systematic literature review. *PLoS One*. 2023;18(5):e0283093.

58. Agnihotri A, Vasudev H, Singh G, Singh S, Hosalli R, Veerasha G, et al. Evaluation of HVOF sprayed and burnished WC-Co-Cr coatings on boiler steel: Mechanical and microstructural properties. *J Bio Triblo-Corrosion*. 2025;11(2):1–12.

59. Gabra MH, Jain RK, Tiwari A. Energy efficient cupola furnace via hybridization with a biomass gasifier. *Int J Emerg Technol Eng Res*. 2017;5:54–62.

60. Nandan M, London M, Bent-Goodley T. Social workers as social change agents: Social innovation, social intrapreneurship, and social entrepreneurship. *Hum Serv Organ: Manag Leadersh Gov*. 2015;39(1):38–56.

61. Schaltegger S, Beckmann M, Hockerts K. Collaborative entrepreneurship for sustainability. Creating solutions in light of the UN sustainable development goals. *Int J Entrep Ventur*. 2018;10(2):131–52.

62. Satar MS. Sustainability and triple bottom line planning in social enterprises: Developing the guidelines for social entrepreneurs. *Int J Sustain Dev Plan*. 2022;17(3):813–21.

63. Swarnkar H, Pandey RK, Prakash VV, Nayak S, Vasnani H, Jain R, et al. Performance analysis of IoT-based temperature monitoring box type solar cooker: A multi-objective optimization approach. *Recent Pat Mech Eng*. 2024.

64. Oulamine A, Hattabou A, El Gareh F, Elaabiri O. Community development: Cooperative social entrepreneurship as a driver of social innovation and well-being in the Moroccan context. *Int J Community Divers*. 2024;24(2):1.

65. Pandel N, Tiwari A, Bansal P, Nayak S, Amrousse R, Azat S. Deep learning for lightweight materials: CNN-driven microstructure optimization in AZ61 alloy. In: *Deep Learning Innovations for Securing Critical Infrastructures*. IGI Global Sci Publ; 2025. p. 545–76.

66. Stephan U, Patterson M, Kelly C, Mair J. Organizations driving positive social change: A review and an integrative framework of change processes. *J Manage*. 2016;42(5):1250–81.

67. Prasad CD, Tiwari A, Suryawanshi SR, Dileep BP, Gowda AC, Masum H, et al. Overview of thermal spray coating on additive manufacturing. *Prog Addit Manuf*. 2025;10(8):4327–47.

68. Koe Hwee Nga J, Shamuganathan G. The influence of personality traits and demographic factors on social entrepreneurship start up intentions. *J Bus Ethics*. 2010;95(2):259–82.

69. Tiwari A, Varshney P, Swarnkar H, Pandel N, Vasnani H, Akram M, et al. ANN prediction analysis of engine performance and emissions characteristics using a new set of plastic pyrolysis oil blended with pure diesel. In: *Expert Artificial Neural Network Applications for Science and Engineering*. IGI Global Sci Publ; 2025. p. 317–58.

70. Kury KW. Sustainability meets social entrepreneurship: A path to social change through institutional entrepreneurship. *Int J Bus Insights Transform*. 2012;4.

71. Pylypenko V, Pylypenko N, Slobozhan O, Nahorna O, Tkachenko B. Social inclusion in driving sustainable growth within United territorial communities. *Grassroots J Nat Resour*. 2024;7(3):420–57.

72. Bansal S, Sarker T, Yadav A, Garg I, Gupta M, Sarvaiya H, et al. Indigenous communities and sustainable development: A review and research agenda. *Glob Bus Organ Excell*. 2024;43(4):65–87.

73. Baquero JEG, Monsalve DB. From fossil fuel energy to hydrogen energy: Transformation of fossil fuel energy economies into hydrogen economies through social entrepreneurship. *Int J Hydrogen Energy*. 2024;54:574–85.

74. Filser M, Kraus S, Roig-Tierno N, Kailer N, Fischer U. Entrepreneurship as catalyst for sustainable development: Opening the black box. *Sustainability*. 2019;11(16):4503.

75. Thananusak T, Suriyankietkaew S. Unpacking key sustainability drivers for sustainable social enterprises: A community-based tourism perspective. *Sustainability*. 2023;15(4):3401.

76. Offiong UP, Szopik-Depczyńska K, Ioppolo G. FinTech innovations for sustainable development: A comprehensive literature review and future directions. *Sustain Dev*. 2025.

77. Schaltegger S, Lüdeke-Freund F, Hansen EG. Business models for sustainability: A co-evolutionary analysis of sustainable entrepreneurship, innovation, and transformation. *Organ Environ*. 2016;29(3):264–89.

78. Onileowo TT, Muharam FM. The profound influence of social entrepreneurship on the advancement of sustainable development: A systematic review. *Int J Novel Res Mark Manag Econ.* 2024;11(1):83–103.
79. Rahdari A, Sepasi S, Moradi M. Achieving sustainability through Schumpeterian social entrepreneurship: The role of social enterprises. *J Clean Prod.* 2016;137:347–60.