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Abstract 
A comparative study of Moshinsky transformation and Slater integral methods in successful 

calculation of Binding Energy of mirror hypernuclei pairs ( 6 6~He Li 
, 

14 14~C N  ), using 

six-quark probability of nucleon-nucleon ( ( )6
0

q
NNP r ) and nucleon-Λ hyperon ( ( )6

0
q
NP r ). The 

contribution of direct and exchange terms to the six-quark probability show that the Pauli 

exchange terms in ( )0
6 rP q

NN  
is about 40% of the direct term, which leads to a sizable 

reduction in the six-quark probability. It is observed that the six-quark cluster formation 

probabilities obtained in Slater method are larger than the corresponding values obtained in 

Moshinsky method.  
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INTRODUCTION 
During last few years, a great deal of attention 

has been made to the studies of the quark 

degree of freedom in nuclei and it has led to a 

better understanding of several nuclear 

phenomenon. Thus, invoking quark degrees of 

freedom in nuclei has a far-reaching 

consequence on several nuclear properties 

particularly nucleon-nucleon and nucleon-Λ 

hyperon interaction. 

 

A number of deep inelastic scattering 

experiments of leptons and neutrino support 

the quark structure of hadrons. In the region 

where two hadrons overlap each other the 

internal structure of hadrons is expected to 

play more explicit role. The field of the strong 

interaction is the gluon field coupled to the 

color of quarks, not the pion field. The nuclear 

force is just the remainder of the strong force 

of the color neutral nucleon [1]. 

 
In the present work the six-quark bag 
contribution to the binding energy difference 

of 6 6He Li −  and
14 14C N −  has been estimated 

in the framework of hybrid quark model 
(HQM) [2] using Moshinsky transformation 
[3] and Slater integral methods [4]. The 
overlap probability of formation of a six-quark 
bag in the HQM, the two nucleons maintain 
their identity as long as the distance between 

them is greater than a certain cut off radius 0r . 

For distances smaller than 0r the two baryons 

overlap and form a six-quark bag. Thus, HQM 
retains the conventional meson exchange 
picture at long distances and represents the 
effects of quantum chromodynamics (QCD) at 
short distances. Exact calculation of six-quark 
probability [5] within the constraints of QCD 
is difficult to make in a model independent 
way but it can be related to internal NN wave 
functions under different approximations. If 
the six-quark plus NN wave functions obey the 
same normalization conditions as an ordinary 
NN wave function, then the six-quark 
probability equals the probability defect of 

wave functions for 0r r .  
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The probability to find six-quark for 0r r  does not have to be the same as that of finding two 

nucleons for 0r r . Using the Moshinsky transformation and Slater integral methods for the 

evaluation of matrix elements in the overlap probability of six-quark bag, a mathematical framework 

for nucleon-nucleon pair inside a nucleus or a hypernucleus from the shell model wave functions has 

been described in detail. 

 

CALCULATION 
The hybrid quark model can be generalized to the nucleon-nucleon pair inside a nucleus and the six-

quark probability can be calculated from the shell model wave functions. We are interested with the 

state of the valence particle to form six-quark bag with the core particles only. The average 

probability ( )6
0

q
NNP r  can be defined as sum of single particle terms as, 

( ) ( ) ( )6
0 02 1

i i i i

i i i i

q
NN i n l j t

n l j t

P r j P r= +
 

where, 

( )
( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 12

1
1 2 1 2 1 2

2 1 2 1i i i i V i V i i V

v i

n l j t
m mv i

P r r r
j j

           = − −
+ +



 ( )0i i i in l j tP r  is been interpreted as the probability for the valence particle to be within a distance of a 

specified core particle with quantum number i i i inl j t . Where ( )v v v vn l j =  and ( )i i i inl j =  

represent the quantum states of the valence and the core nucleons respectively. Thus ( )6
0

q
NNP r  can be 

expressed as a combination of a direct term ( )0i i i

d
n l jP r  and an exchange term ( )0i i i

e
n l jP r  as, 

( ) ( ) ( ) ( )6
0 0 02 1 2

i i i i i i

i i i

q d e
NN i n l j n l j

n l j

P r j P r P r = + −   

The valence nucleon can also overlap with the hyperon and from a six-quark bag with the hyperon. 

The corresponding overlap probability can be expressed as,  

( ) ( )
0 0 0

6 '
0 0

q
N n l jP r P r =  

 With 

( )
( )( )

( ) ( ) ( ) ( ) ( )
0 0 0 0 0

'
0 0 12

0

1
1 2 1 2

2 1 2 1 v v

n v

n l j
m mv

P r r r
j j

       = −
+ +

  

There is no exchange term for   overlapping. If instead of the average probability ( )0
6 rP q

NN , we use 

the valence probabilities 0P , that it does not overlap with any of the nucleons or hyperons then, 

( )
1

6
0

q
QP r  for six-quark bag, ( )0

6

2
rP q

Q  for nine-quark bag and ( )0
6 rP q
N ; the completeness of the wave 

function demands, 

( ) ( ) ( ) 10
6

0
6

0
6

0 21
+++  rPrPrPP q

N
q

Q
q

Q   

To calculate the overlap probability ( )6
0

q
NNP r and ( )6

0
q
NP r  for the evaluation of matrix elements using 

harmonic oscillator wave functions, following two methods are used: (1) Moshinsky transformation, 

and (2) Slater integral. 

 

Moshinsky Transformation Method 

In the Moshinsky method, the matrix elements in the overlap probability are transformed to the 

centre-of-mass and relative transformation coefficients and Moshinsky brackets, where the nucleons 

or hyperons in nuclei are described by harmonic oscillator wave functions. For calculation of 

Moshinsky Coefficient, consider the Hamiltonian of the two nucleons in a harmonic oscillator 

potential of frequency w as,  
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( ) ( ) ( ) 2
2

22
2

2
1

22
1

2

1
/

2

1

2

1
/

2

1
2,1 rmwmprmwmpH +++=   

 

The relative coordinate r and the centre-of-mass coordinate R may be defined as, 

 

 

( )21
2

1
rrR +=  

The corresponding momentum is 

( )21
2

1
ppp −=  

( )21
2

1
ppP +=  

The Hamiltonian can be written as, 

( ) ( ) ( ) 222222

2

1
/

2

1

2

1
/

2

1
2,1 RmwmprmwmpH +++=  

The angular momentum associated with the different coordinates will be designated by .,, 21 Llll  from 

the conservation of angular momentum 

Llll +==+ 21  

Both ( ) ( )21 222111
rr mlnmln   and ( ) ( )rR nlmNML   form a complete set of wave function of two particles 

moving in the harmonic oscillator potential. Thus, any one-product wave function ( ) ( )21 222111
rr mlnmln   

should be expressed in terms of a complete set of harmonic oscillator functions ( ) ( )rR nlmNML  . The 

wave function for a single harmonic oscillator will be given by 

( ) ( ),lmnl YrR  

Where lmY are spherical harmonics and ( )rRnl the radial functions. As  commutes with the 

Hamiltonian, the angular momentum coupled wave functions are defined as, 

=
nlNL

MB
lnlnNLnllnln  ,,;, ,, 22112211  

Where the quantity denoted as
MB

lnlnNLnl  ,,,, 2211 is Moshinsky transformation brackets [6]. 

The LS coupled wave functions can be changed over to relative and centre-of-mass representation 

using Moshinsky transformation brackets. Thus, 




















=

nlNL
S

JSnlNLlnlnnlNL

JS

jl

jl

AJjlnjln






;;;;
2

1
2

1

;, 221122

11

222111

 
Then 

( )

  ( ) −



















=

−

nlNL
S

nlrrVnllnlnnlNL

JS

jl

jl

A

JjlnjlnrrVJjlnjln






21

2

221122

11

22211121222111

;;
2

1
2

1

;,;,

 

The final expression for the direct term is been simplified to, 

( )1 2

1

2
r r r= −
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( ) ( )
22

0 0

1
2

1 ; ;
2i i i

i i

d
n l j i v i i v v MB

SnlNLJM

l j

P r A l j nlNL nl n l nl r r nl

S J


  



 
 
 = −
 
 
 

  

Where, 

( ) ( )
0 2

0
0

r

nlnl r r nl R r dr − =   

 

( )nlR r
 
is normalized radial functions and ; ;i i v v MB

nlNL nl n l   the transformation coefficients in 

the Moshinsky brackets. In calculating overlap probability of hyperons ( )6
0

qP r  the matrix elements 

of two baryons of different mass can be expanded in relative and centre-of- mass basis by 

( )N Nv m m  =  

Where   and N  are the oscillator length parameter for hyperon and nucleon respectively. 

 

Slater Integral Method 

The direct and the exchange integral of potential V ( )21 rr −  can be solved by a technique developed 

(Slater, 1929) in atomic spectroscopy. 

 

 

 

 

( ) cosP  Can be expanded in a finite set of spherical harmonics which are functions of ( )11 and 

( )22 respectively and where, 

( ) ( ) ( )( ) ( )


  cos,cos,
2

12
2121

1

1
21 drrPrrVrr 

+

−

+
=−  

The integrals can be expressed as the products of radial and angular parts. Angular part can be 

integrated by using the standard techniques of angular momentum algebra. The radial integrals or 

Slater integrals F  in the direct matrix element are given by 

 

 

 

 

 

Similarly, the radial integrals in the exchange matrix element are 

 

( ) ( ) ( ) ( ) ( )= 2
2

21
2

121

2

222

2

222

1

111

1

111 , drrdrrrr
r

rlRn

r

rlRn

r

rlRn

r

rlRn
G    

 

If the harmonic oscillator wave functions are used to describe the nucleons, the product of wave 

functions ( ) ( )21 222111
rr mlnmln   can be transformed to a sum of products ( ) ( )rR nlmNLM  , with the 

following restrictions,  

( ) LNlnlnlni +++=+++ 2222 221 , for energy conservation,
 

( ) Llllii +==+ 21 , for conservation of angular momentum. R and r refer to the centre-of-mass 

and relative coordinates of two nucleons and are defined as,  

( ) ( ) ( )1 2 1 2
0

, cosV r r r r P 


 


=

− =

( ) ( )
( )

2

1 1 1 2 2 2 2 2
1 1 2 1 1 2

1 2

,
Rn l r Rn l r

F r r r drr dr
r r

= 
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,cos4
2

22
2 RrrRr ++=  

( )22
2121 4

4

1
cos. rRrrrr −==   

( )222
2

2
1 4

2

1
. rRrr +=+  

For our calculation the function ( )120 rr − is been expanded in complete set of Legendre polynomials 

of the angle   between the vectors r1 and r2, 

( ) ( ) ( )


=

=−
0

21120 cos,


  Prrfrr  

Where, 1 2r r r= −  

The unknown quantities ( )21,rrf  are given in terms of ( )120 rr −  by the integral 

( ) ( ) ( ) ( )


−
+

=
0

12021 coscos
2

12
, 


 dPrrrrf  

The direct and the exchange terms reduce to 

( ) ( ) ( ) ( ) ( )
1

2 2 21
0 1 1 2 2 1 2 0 122 0 0 1

cos
i i i i i i v v v

d
n l j n l j n l jP r drr dr r r r d r r   

 

−
= −    

And, 

( ) ( ) ( ) ( ) ( ) ( )2 2 * * * *
0 1 1 2 2 1 2 1 2 1 2

0 0
,

i i i i i v v i i i i i i v v v v v v

e
n l j l j l j n l j n l j n l j n l jP r drr dr r e r r r r r r   

 

=    

Where, 

( ) ( )( ) ( )

( ) ( ) ( )

2

1 2 1
2

1
1

0 122 1

, 2 1 2 1 2 1
0 0 0

cos cos

i i v v

i vi v

l j l j v v v

v i

l ll l
e r r l l l

j j

d r r P







  
−

   
= + + +    

   

 −





 

Where, ( )1i i in l j r  is the radial wave function for core nucleon and 2( )
v v vn l j r valence nucleon function. 

The formulae for the six-quark probability density for the mirror hypernuclei pair LiHe 66 ~ and

NC 1414 ~  are given as follows: 

LiHe 66 ~  : In LiHe 66 ~  the overlap probability is determined between
2

10s  core nucleon and 
2

10p

valence nucleon. The direct and the exchange terms in the overlap probability are reduced. 

 

 

 

 

 

 

 

 

Where, 

 

4

0

16

3
NC





  
=   
  

( ) ( ) ( ) ( )0 0

1
2 1 1 2

2i i i

d
n l j

A
P r C B T T

  
= +  

  

( ) ( ) ( ) ( )0
0

1
2 1 1 2

2 2i i i

e
n l j

C A
P r B T T

  
= −  

  

2 1 2 1;2r r r R r r= − = +

,cos4
2

22
1 RrrRr −+=
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222

0
1 Nv RA R e dR


−=   

224

0
1 Nv RB R e dR


−=   

( )
1

20 22

0
1 N

r
v rT r e dr−=   

( )
1

20 4

0
2 N

r
v rT r e dr−=   

NC 1414 ~  : In NC 1414 ~  pair the six-quark 

formation probability for the valence nucleon 
can be expressed as the sum of the probability 

of the overlap of the 
2

10s  core nucleon and 

with
 2

10p  core nucleon. 

( ) ( ) ( )0
6

0
6

0
6 rPrPrP q

NN
IIq

NN
Iq

NN +=  

( )0
6 rP q

NN
I

, is given by expression similar to 

direct and exchange terms in LiHe 66 ~ .

( )0
6 rP q

NN
II

, gets reduced to the following 

expressions, 

( ) ( ) ( ) ( ) ( )0 00

1 1
2 1 1 3 2

4 3i i i

II d
n l j

A B
P r C C T T T

    
= + +    

    
 

( ) ( ) ( ) ( ) ( ) ( ) ( )00
0

5 40
16 1 1 1 3 1 2

16 3i i i

II e
n l j

C
P r C T A T B T

  
= + −  

  

 

Where 
5

00

32

9
NC





  
=   
  

 

226

0
1 Nv RC R e dR


−=   

( )
1

26

0
3 Nv rT r e dr


−=   

 

RESULTS AND DISCUSSION 
In the present work we have estimated the six-
quark probability on the binding energy 
difference of mirror pair of p-shell hypernuclei 

(
6 6He Li  , 

14 14C N  ). We have discussed 

the various results obtained in the − binding 
energy difference of mirror hypernuclei pair 
6 6He Li −  and

14 14C N − . The six-quark 

probabilities needed in the evaluation have 
been calculated using harmonic oscillator 
wave functions. The results for the six-quark 
probabilities and their contribution to the 
binding energy difference for different choices 
of the various parameters have been 
summarized in Tables 1–. The results show 

that the six-quark bag formation probabilities 

for both NN and N overlaps are strongly 
dependent on the choice of the parameters. NN 
overlap probabilities range between 3% to 10 

% andN overlap probabilities lies between 
0.4% and 1%, for r0 = 1 fm. The variation of 
six-quark probabilities with oscillator length 
parameters for A=6 and 14 hypernuclei has 
been shown in Figures 1and 2. 
 

The results of our calculations show that the 

six-quark bag formation effect contributes 

significantly to the binding energy difference 

of the mirror pair of nuclei. The contribution 

ranges from 14 keV to 157 keV for 
6 6~He Li  and 38 keV to 203 keV for

14 14~C N  . The calculations show that the 

overlap probability of the hyperon with the 

valence nucleon makes a smaller contribution 

to the binding energy difference. It is also 

observed that six-quark cluster formation 

effect increases the binding of  - hyperon in 

the neutron rich nuclei compared to that of its 

proton rich nuclei. The  - particle is more 

bound in 
6 14,He C  compared to that in 

6 14,Li N   respectively. 

 

In the calculation of six-quark probabilities by 

Slater method the values of N and
 can be 

fixed independently of each other. However, in 

Moshinsky method, to facilitate Moshinsky 

transformation to relative basis in the matrix 

elements in given equation, we have to choose

( )N N Nm m = . Thus fixing N

automatically fixes
and vice versa. This 

prescription has been used earlier by Bando et 

al (1985) [7] and Mehrotra (1991) [8] in the 

study of hypernuclei. In the calculations of 

Mujib I and Mujib II [9], the oscillator length 

parameters   
and N are obtained by fixing 

the value of one of the oscillator length 

parameters   
or N and calculating the other 

from the above prescription [10]. For

LiHe 66 ~ pair the results of our calculation 

for six-quark probabilities using Moshinsky 

method are shown in Table 1 and for Slater 

method in Table 2 for the parameter of Gal I 
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[11]. In these Tables 1 and 2, ( )0
6

1
rP q

Q and 

( )0
6

2
rP q

Q  give the values of the exclusive 

probabilities for the formation of six-quark 

bags ( )0
6

1
rP q

Q  and nine-quark bags ( )0
6

2
rP q

Q of 

the valence nucleon with one core nucleon and 

two core nucleons respectively. 

 

Table 1: In  the Average Probability 

of the Valence Nucleon, to Form a Six-quark 

Bag with the Core Nucleons and 

Hyperon
 
for Different Values of the 

Cut Off Radius r0. 
 
and  are the 

Six-quark and Nine-quark Bag Formation 

Probabilities with One and Two Core 

Nucleons Respectively. The Values Shown 

Have Been Calculated with the Parameters of 

Gal I using Moshinsky Method (In Gal I,

; ) 

     

0.85 0.03105 0.03033 0.000119 0.00439 

0.87 0.03668 0.03568 0.000165 0.00520 

0.89 0.03673 0.03573 0.000166 0.00521 

0.91 0.04300 0.04163 0.000226 0.00612 

0.93 0.04306 0.04168 0.000227 0.00613 

0.95 0.04311 0.04173 0.000228 0.00614 

0.97 0.04994 0.04809 0.000304 0.00714 

0.99 0.04999 0.04814 0.000305 0.00715 

1.0 0.05004 0.04819 0.000306 0.00716 

 

Table 3 (for Moshinsky method) and Table 4 

(for Slater method), show the contribution of 

direct and exchange terms to the six-quark 

probability. It is worth noting that the Pauli 

exchange terms in 
 
is about 40% of the 

direct term, which leads to a sizable reduction 

in the six-quark probability. 

 

The six-quark probability
 

and

depend on the cut off radius r0. Thus, it is 

necessary to use some constrain for the value 

of r0, hence the results for the six-quark 

probabilities for other sets of oscillator length 

parameters for Moshinsky and Slater method 

are shown in Tables 5 and 6 respectively for 

 
s 

Table 2: In the Six-quark Probabilities 

 
 and Nine-quark Bag 

Probabilities  for Different Values of 

the Cut Off Radius r0. The Values Shown Have 

been Calculated with the Parameters of Gal I 

using Slater Method (In Gal I, ;

). 

     

0.85 0.05758 0.05513 0.000403 0.01915 

0.87 0.06854 0.06508 0.000567 0.02271 

0.89 0.06866 0.06518 0.000569 0.02274 

0.91 0.08108 0.07625 0.000789 0.02674 

0.93 0.08120 0.07636 0.000791 0.02678 

0.95 0.08133 0.07647 0.000794 0.02682 

0.97 0.09505 0.08844 0.001076 0.03121 

0.99 0.09518 0.08854 0.001079 0.03124 

1.0 0.09531 0.08866 0.001082 0.03128 

 

Table 3: In the Contribution of Direct 

and Exchange Terms to the Average Six-Quark 

Bag Probabilities
 
For the Valence 

Nucleon to Form a Six-quark Bag with the 

Core Nucleon, as a Function of Cut Off Radius 

r0. The Values Shown Have been Calculated 

with Gal I Parameters using Moshinsky 

Method. 

 

Direct term Exchange term 

0.85 0.07904 0.03387 

0.87 0.09336 0.04001 

0.89 0.09349 0.04007 

0.91 0.10947 0.04691 

0.93 0.10960 0.04697 

0.95 0.10973 0.04703 

0.97 0.12712 0.05448 

0.99 0.12725 0.05453 

1.0 0.12738 0.05459 

 

The six-quark probability
 
is strongly 

dependent on the choice of the parameters and 

ranges between 3% to 10% for r0 = 1.0 fm. 

is much smaller and lies between 

0.4% to 1%. In all the calculations, the six-

quark cluster formation probabilities obtained 

in Moshinsky method are smaller than the 

corresponding values obtained in Slater 

method. This is in accordance with the 

calculation of Kang and Oshagan [12]. These 

authors have shown that the value of six-quark 

probability calculated by using Moshinsky 
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method is smaller than those calculated by 

Slater method. The results of our calculation 

show that the quark contribution to the binding 

energy is sizable and varies between 14 keV to 

157 keV. The split is various terms 

contributing to the quark correction to the 

binding energy difference is shown in Table 7 

for the parameters of Gal I [10].  

 

Table 4: In the Contribution of 

Direct and Exchange Terms to the Average 

Six-Quark Bag Probabilities for the 

Valence Nucleon to form a Six-quark Bag with 

the Core Nucleon, as a Function of Cut Off 

Radius r0. The Values shown have been 

Calculated with Gal I Parameters using Slater 

Method. 

 

Direct term Exchange term 

0.85 0.01855 0.00832 

0.87 0.02201 0.00975 

0.89 0.02204 0.00976 

0.91 0.02593 0.01132 

0.93 0.02597 0.01133 

0.95 0.02600 0.01134 

0.97 0.03028 0.01302 

0.99 0.03031 0.01303 

1.0 0.03035 0.01304 

 

Table 5: In Average Six-quark 

Probability for the Valence Nucleon to Form a 

Six-Quark Bag with the Core Nucleons

and Hyperon for the Cut Off 

Radius
 
and  are 

the Six-quark and Nine-quark Bag Formation 

Probabilities with One and Two Core 

Nucleons Respectively. The Values Shown 

Have been Calculated in Moshinsky Method 

for Different Sets of Oscillator Length 

Parameters ( ). 

Reference  
    

Mujib Ia 0.02793 0.02735 0.00010 0.00393 

Mujib IIb 0.07969 0.07502 0.00076 0.01156 

Wangc
 0.03572 0.03477 0.00016 0.00504 

a) ;  

b) ;  

c) ;  

Table 6: For 
 
Six-quark Bag 

Probabilities   

and Nine-Quark Bag Probabilities  

Obtained by Slater Method for the Cut Off 

Radius  The Values Shown Have 

Been Calculated for Different Sets of 

Oscillator Length Parameters Used by 

Different Authors. 
Reference  

    

Mujib Ia 0.09531 0.08866 0.00108 0.02845 

Mujib IIb 0.05153 0.04956 0.00032 0.01709 

Wangc 0.06668 0.06340 0.00054 0.02209 

a) ;  

b) ;  

c) ;  
 

 

Table 7: For , Split of Various 

Terms in the Quark Contribution to the 

Binding Energy Difference  of 

. The Values Shown Have Been 

Calculated using Gal I Parameters and NRQM 

I Model for Mass Difference of Six-Quark Bag 

of Two Neutrons and Two Protons. 
Terms Contributing to 

 

NRQM I 

Moshinsky 

Method (MeV) 

Slater 

Method 

(MeV) 

 
0.0651 0.1239 

 
+0.0465 +0.0886 

 
+0.0093 +0.0407 

 
-0.0100 -0.0438 

 

The contribution in the binding energy 

difference due to six-quark and nine-quark 

bags is 0.0522 MeV and 0.0004 MeV 

respectively in the Moshinsky method. The 

corresponding values are 0.0961 MeV and 

0.0015 MeV in Slater method. Thus, the 

dominant contribution to the binding energy 

difference comes from the exclusive six-quark 

probability. 

We have made similar calculation for

hypernuclei pair. The results for the six-quark 
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bag formation probabilities and various other 

terms are summarized in Table 8–11 for 

different cases for both Moshinsky and Slater 

methods.  
 

Table 8: In  Average 

Probabilities for the Valence Nucleon to Form 

Six-quark Bag with the Core Nucleons 

 and Hyperon  for Different 

Values of the Cut Off Radius r0.
 

 and 

 are the Six-quark and Nine-quark 

Bag Formation Probabilities with One and 

Two Core Nucleons Respectively. The Values 

Shown Have been Calculated with the 

Parameters of Gal I using Moshinsky Method. 

(In Gal I, ; ). 

 
    

0.85 0.06744 0.06339 0.000179 0.00879 

0.87 0.07989 0.07423 0.000248 0.01041 

0.89 0.08000 0.07433 0.000249 0.01043 

0.91 0.09395 0.08617 0.000340 0.01225 

0.93 0.09407 0.08627 0.000341 0.01226 

0.95 0.09420 0.08638 0.000342 0.01228 

0.97 0.10946 0.09896 0.000455 0.01428 

0.99 0.10958 0.09906 0.000456 0.01429 

1.0 0.10970 0.09916 0.000457 0.01431 
 

Table 9: In  Six-quark 

Probabilities 
  

and Nine-quark Probabilities  are 

Obtained by Slater Method for Different Cut 

Off Radius r0 with the Parameters of Gal. 

 
    

0.85 0.07678 0.07154 0.000230 0.01915 

0.87 0.09385 0.08608 0.000339 0.02271 

0.89 0.09410 0.08630 0.000341 0.02274 

0.91 0.11430 0.10288 0.000495 0.02674 

0.93 0.11458 0.10311 0.000497 0.02678 

0.95 0.11488 0.10334 0.000499 0.02682 

0.97 0.13799 0.12150 0.000707 0.03121 

0.99 0.13830 0.12174 0.000710 0.03124 

1.0 0.13862 0.12199 0.000713 0.03128 

Table 10: In   Average 

Probabilities for the Valence Nucleon to form 

Six-quark Bag with the Core Nucleons 

 and  Hyperon for the Cut Off 

Radius  The Values Shown Have 

been Obtained Using Different Sets of 

Oscillator Length Parameter ( ) in 

Moshinsky Method. 
Reference 

    

Mujib Ia 0.09355 0.08583 0.000337 0.01217 

Mujib IIb 0.09873 0.09016 0.000374 0.01285 

Wangc 0.10023 0.09139 0.000385 0.01303 

a) ;  

b) ;  

c) ;  

 

Table 11: For  Six-quark 

Probabilities  , 

and Nine-Quark Probabilities  are 

Obtained by Slater Method for Different Sets 

of Oscillator Length Parameters ( ) 

used by Different Authors at Cut Off Radius 

 

Referenc

e 
    

Mujib Ia 0.13862 0.12199 0.000713 0.02845 

Mujib IIb 0.11388 0.10254 0.000491 0.02040 

Wangc 0.12396 0.11058 0.000577 0.02853 

a) ;  

b) ;  

c) ;  
 

 and  are dependent on the 

choice of oscillator length parameters and 

increase with an increase of the values of  

and . Figures 1 and 2 show the variation of 

 with , for A=6 and A=14 mirror 

hypernuclei pair respectively. The variation is 

shown for the parameters of Gal I for both 

Moshinsky and Slater methods. In the case of 

 pair, overlap probability of the 

valence nucleon with the  core nucleon 

and  core nucleons. As expected for 

 valence nucleon, overlap probability 

with the s-core nucleons is larger, compared to 

that with the p-core nucleons. The results of 

our calculation show that the overlap 
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probability of the valence nucleon with the 

hyperon also make a small contribution to the 

binding energy difference and the six-quark 

bag formation effect contributes significantly 

to the binding energy difference of the mirror 

pair of nuclei.  

 

 

Fig. 1: Graph Showing Variation of Six-quark Probability  with Oscillator Length 

Parameter for A = 6 Hypernuclei with Cut Off Radius r0 = 1 fm. 

 

 

Fig. 2: Graph Showing Variation of Six-quark Probability  with Oscillator Length 

Parameter for A = 14 Hypernuclei with Cut Off Radius r0 = 1 fm. 
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CONCLUSION 
(i) The six-quark probabilities evaluated 

separately for Moshinsky and Slater 

methods for r0=1.0 fm, in Figures 1 and 2 

for A= 6, 14 hypernuclei, show the 

variation of oscillator length parameter 

(ν) from 0.1 fm-2 to 0.7 fm-2. 

(ii) Our observations show that the values of 

six-quark probability calculated by using 

Moshinsky method are smaller than those 

calculated by Slater method. 

(iii) The contribution of direct and exchange 

terms to the six-quark probability show 

that the Pauli exchange terms in ( )0
6 rP q

NN  
is about 40% of the direct term, which 

leads to a sizable reduction in the six-

quark probability, as calculated by 

Moshinsky and Slater methods. 

(iv) The six-quark probability ( )0
6 rP q

NN  
is 

strongly dependent on the choice of the 

oscillator length parameters, which 

ranges from 3% to 10% for both methods. 

(v) The six-quark probability ( )0
6 rP q
N  lies 

from 0.4% to 1% for r0 = 1.0 fm which is 

much smaller than ( )0
6 rP q

NN  
for both 

methods.  

(vi) Our calculation shows that the binding 

energy difference of the mirror pair of 

nuclei with six-quark bag formation 

effect using Moshinsky and Slater 

methods, contributes significantly for
6 6He Li   and 

14 14C N  . 

(vii) The contributions in the binding energy 

difference, due to six-quark and nine-

quark bags are 0.0522 MeV and 0.0004 

MeV respectively, in the Moshinsky 

method and the corresponding values are 

0.0961 MeV and 0.0015 MeV in Slater 

method. Thus, the dominant contribution 

to the binding energy difference comes 

from the exclusive six-quark probability. 
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