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Abstract

Accurate dosimetry is essential in nuclear medicine for optimizing radionuclide therapies and ensuring
patient safety. In radiopharmaceutical dosimetry, the Medical Internal Radiation Dosimetry (MIRD)
Committee of the Society of Nuclear Medicine is the pioneer in organ-level dosimetry providing the
fundamental basis for commonly used clinical and research dosimetry software like MIRDOSE and
OLINDA/EXM. Recently, in the MIRD Pamphlet No. 28, Part 1, the MIRD Committee of the Society of
Nuclear Medicine and Medical Imaging presented a new Software Tool, MIRDcalc, for organ-level and
sub-organ tissue dosimetry, based on a standard Excel Spreadsheet Platform to enhance the
personalized internal dosimetry. This study evaluates and compares the internal dosimetry software
MIRDcalc and OLINDA/EXM for calculating absorbed and effective doses in neuroendocrine tumor
(NET) patients treated with Lutetium-177 DOTATATE, based on quantitative SPECT/CT imaging data.
MIRDcalc, a freely accessible Excel-based dosimetry tool, integrates updated anatomical models, user-
friendly interfaces, and quality control utilities. Its performance was assessed against OLINDA/EXM,
a widely used commercial software, and benchmarked using the standardized absorbed radiation dose
calculation equations, described in the MIRD primer 2022. Dose estimates for key organs were derived
using both platforms, and results demonstrated a high level of concordance between the two
methodologies. Minor discrepancies in absorbed dose values were attributed to differences in
underlying phantom models, organ definitions, and dose calculation algorithms. The analysis
underscores MIRDcalc’s viability as a research-grade tool for personalized dosimetry, offering
comparable accuracy to established systems like OLINDA/EXM. Future work should focus on
expanding personalized dosimetry, especially for Lu-177 DOTATATE, NET patients, for radionuclide
therapy capabilities, and validating models across
broader clinical datasets.
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significant evolution since its inception in the 1960s
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medicine to ensure both therapeutic efficacy and
patient safety. The Medical Internal Radiation
Dosimetry (MIRD) [2] schema remains the
foundational approach for calculating absorbed
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radiation doses based on the radiopharmaceutical distribution in the human body. This method enables
dose assessments at various biological scales, from the whole body to organ, sub-organ, voxel, and
cellular levels, facilitating both personalized and population-based dosimetry [3]. Organ-level
dosimetry is commonly used in clinical settings because of the balance between computational
efficiency and anatomical accuracy [4].

The most prominent software tools built on the MIRD framework are MIRDOSE [5] and its
successors [6], OLINDA/EXM [7], and MIRDcalc [8, 9]. OLINDA/EXM is a licensed Java-based
application that relies on RADAR phantoms and includes modules for kinetic modeling and effective
dose calculation based on ICRP Publications 103 and 128, [10, 11] tissue-weighting factors. In contrast,
MIRDcalc is a freely accessible Microsoft Excel-based software developed by the MIRD Committee.
It offers updated phantom models, including those from ICRP Publications 110 and 143 [12, 13] and is
designed to be both user-friendly, single-screen interface, and transparent, with an emphasis on
educational and research applications. MIRDcalc is a robust computational tool for absorbed dose
calculation in the dosimetry protocol workflows, by initially providing an input of time-integrated
activity coefficients (TIACs) [14, 15] (also known as ‘residence time’) of the radiopharmaceutical in
organs and tissues. Comparative studies of different dosimetry platforms are essential because of the
differences in anatomical modeling, computational algorithms, and assumptions about
radiopharmaceutical kinetics. In the context of Lu-177 DOTATATE therapy [16, 17] for
neuroendocrine tumors (NETs) [18], precise calculation of absorbed radiation dose is crucial, given the
heterogeneity in organ uptake and tumor burden. Despite the availability of multiple tools, variability
in dose estimates remains a concern, particularly when reference phantoms do not match the patient-
specific anatomy [19]. This study focused on a comparative analysis of absorbed and effective dose
outcomes between MIRDcalc and OLINDA/EXM using SPECT/CT imaging data from NET patients
undergoing Lu-177 DOTATATE radionuclide therapy [20]. This study aimed to assess the validity,
limitations, and potential of MIRDcalc as a practical dosimetry tool for clinical research.

METHODOLOGY
Overview of MIRDcalc Software

MIRDcalc is freely accessible dosimetry software developed to facilitate organ-level radiation dose
estimation using the established MIRD schema. Implemented in Microsoft Excel, the software
integrates Visual Basic modules to support user interaction and automate calculations. It utilizes
updated anatomical models based on ICRP Publications 110 and 143, offering both adult and pediatric
phantoms. MIRDcalc, which is based on a standard Excel Spreadsheet Platform, provides enhanced
capabilities to facilitate radiopharmaceutical internal dosimetry. The program is designed for
educational and research purposes, enabling users to compute absorbed doses using TIACs for
radiopharmaceuticals. It supports up to 333 radionuclides and provides a streamlined single-screen
interface, making it accessible to users with basic dosimetric knowledge [8, 9].

Organ-Level Dosimetry Calculations
The core principle behind the absorbed dose estimation of MIRDcalc is the MIRD equation [21],
which is defined as

D(ry) = Z'/f(rs). S (rr<rsg )
Where, D(r7) is the mean absorbed dose to the target region from activity in the source region (in the
unit, Gray (Gy) orl J/kg = 1 Gy), A(rs) is the time-integrated activity in the source region (in the unit,

Becquerel second), and S(rr<— rs) is the S-value indicating the absorbed dose per unit activity from the
source to target (in units, Gy-(Bq-s)™ or mGy-(MBq-s)™).

TIACs [22] represent cumulative activity over time and are calculated from the biodistribution data
defined as

(g~ 202 @)
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Where, d(rs) is the Time-Integrated Activity Coefficient (TIAC), and A, is the administered activity.
MIRDcalc enables global scaling of S-values [23] according to patient-specific total-body mass, thereby
improving personalization.

Tumor Dosimetry Implementation

MIRDcalc supports the definition of up to five spherical tumor regions for dosimetric evaluation [24,
25]. Users input TIACs and specify radionuclides for each sphere. The absorbed dose was calculated
using the interpolated S-values based on the tumor volume. The cross-dose between the tumors and
organs was not considered in the current version [8, 9].

Biodistribution Data Input and Processing

Biodistribution data from SPECT/CT imaging were used to derive TIACs representing cumulative
radiopharmaceutical activity. These are input into MIRDcalc in hours, along with administration
activity in MBgq, and the software outputs absorbed doses per injection and per organ [26].

Effective Dose Estimation

In MIRDcalc, the effective dose [27], a measure of stochastic radiation risk, is computed as a
weighted sum of organ doses using tissue-weighting factors from ICRP Publication 103. This
calculation allows for comparisons across software tools and facilitates the assessment of the potential
biological effects of radionuclide therapy [22, 23].

Comparative Software: OLINDA/EXM

OLINDA/EXM [28] is a commercially licensed software (Hermes Medical Solutions) for organ-level
dosimetry that implements a Java-based interface and employs RADAR phantoms [29]. It calculates
the absorbed and effective doses using a biokinetic modeling module that fits exponential retention
curves to time-activity data. For this study, only adult male and female RADAR phantoms were
considered. Notably, OLINDA/EXM differs from MIRDcalc in its anatomical models and handling of
source regions.

Dosimetric Comparison Metrics

To compare the Lu-177 DOTATATE radiopharmaceutical and absorbed dose estimates from both
MIRDcalc and OLINDA/EXM, two statistical approaches were used [9]:
Logarithmic relative difference (AS5HYP4, );

D(OLINDA)
D(MIRDcalc)

OLINDA _
Amirpcaic = 100 X In

3)

Where, D(MIRDcalc) is the absorbed dose for the target organ »r computed by MIRDcalc, and
D(OLINDA) is the absorbed dose computed by the OLINDA software. This metric is reference-
independent and symmetrical.

OLINDA

Percentage Error (PE al c)’ taken as the gold standard reference [9];

MIRDc

PE OLINDA _ D(OLINDA)-D(MIRDcalc)
MIRDcalc D(MIRDcalc)

X 100 (%) (4)

These metrics were applied across datasets of seven neuroendocrine tumor (NET) patients treated
with Lu-177 DOTATATE based on SPECT/CT-derived dosimetric inputs. The flowchart for the
clinical dosimetry workflow using two software (OLINDA/EXM and MIRDcalc) is shown in Figure 1.
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Figure 1. Flowchart for clinical dosimetry workflow using two software
(OLINDA/EXM and MIRDcalc).
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RESULT
Patient P1, OLINDA/EXM software, and absorbed dose report are shown in Table 1, and Patient P1,
MIRcalc software, and absorbed dose spreadsheet are shown in Figure 2.

Table 1. Patient P1, OLINDA/EXM software, absorbed dose report.

OLINDA - Organ Level INternal Dose Assessment Code (Version 2.1 - copyright Vanderbilt University - 2012)
P1 3D OLINDA REPORT
NOTE: This code gives doses for stylized models of average individuals —results should be applied with caution to
specific human subjects.
NOTE: Users should always carefully check input data (shown below) and critically review the reported results.
Organ Doses [ImSv/MBq] - Nuclide:Lu-177 (); ICRP 89 Adult Male
Calculated 07.16.2024 at 06:39:53 IST
Target Organ Alpha Beta Gamma Total |ICRP-103 | Source Organ |Mass| Kinetics
ED Name [g] Value
[MBq-
h/MBq]
Adrenals 0.00E+00 | 1.98E-01 | 9.09E-02 | 2.89E-01 | 2.66E-03 |Adrenals 14 | 0.00E+00
Brain 0.00E+00 | 1.79E-01 | 1.42E-02 | 1.93E-01 | 1.93E-03 |Brain 1450 | 0.00E+00
Esophagus 0.00E+00 | 1.79E-01 | 3.99E-02 | 2.19E-01 | 8.75E-03 |Esophagus 40 | 0.00E+00
Eyes 0.00E+00 | 1.79E-01 | 1.42E-02 | 1.93E-01 | 0.00E+00 |Eyes 15 | 0.00E+00
Gallbladder Wall | 0.00E+00 | 1.85E-01 | 8.78E-02 | 2.73E-01 | 2.52E-03 |Gallbladder 58 | 0.00E+00
Contents
Left colon 0.00E+00 | 1.81E-01 | 5.22E-02 | 2.34E-01 | 1.13E-02 |Left colon 75 | 0.00E+00
Small Intestine 0.00E+00 | 1.80E-01 | 4.16E-02 | 2.22E-01 | 2.05E-03 |Small Intestine | 350 | 0.00E+00
Stomach Wall 0.00E+00 | 1.84E-01 | 6.71E-02 | 2.51E-01 | 3.01E-02 |Stomach 250 | 0.00E+00
Contents
Right colon 0.00E+00 | 1.79E-01 | 4.55E-02 | 2.24E-01 | 1.09E-02 |Right colon 150 | 0.00E+00
Rectum 0.00E+00 | 1.79E-01 | 2.40E-02 | 2.03E-01 | 4.66E-03 |Rectum 75 | 0.00E+00
Heart Wall 0.00E+00 | 1.79E-01 | 4.42E-02 | 2.23E-01 | 2.06E-03 |Heart Contents | 510 | 0.00E+00
Kidneys 0.00E+00 | 2.25E+00 | 8.42E-02 | 2.33E+00 | 2.15E-02 |Heart Wall 330 | 0.00E+00
Liver 0.00E+00 | 2.15E+00 | 1.14E-01 | 2.27E+00 | 9.06E-02 |Kidneys 310 | 8.20E+00
Lungs 0.00E+00 | 1.80E-01 | 3.26E-02 | 2.13E-01 | 2.56E-02 |Liver 1800 | 4.55E+01
Pancreas 0.00E+00 | 9.21E+00 | 2.07E-01 | 9.41E+00 | 8.69E-02 |Lungs 1200 | 0.00E+00
Prostate 0.00E+00 | 1.79E-01 | 2.39E-02 | 2.03E-01 | 9.37E-04 |Pancreas 140 | 1.52E+01
Salivary Glands | 0.00E+00 | 1.79E-01 | 1.81E-02 | 1.97E-01 | 1.97E-03 |Prostate 17 | 0.00E+00
Red Marrow 0.00E+00 | 1.34E-01 | 2.44E-02 | 1.59E-01 | 1.90E-02 |Salivary Glands | 85 | 0.00E+00
Osteogenic Cells | 0.00E+00 | 1.89E-01 | 4.16E-02 | 2.31E-01 | 2.31E-03 |Red Marrow 1170 | 0.00E+00
Spleen 0.00E+00 | 1.81E+00 | 6.59E-02 | 1.88E+00 | 1.73E-02 |Cortical Bone 4400 | 0.00E+00
Testes 0.00E+00 | 1.79E-01 | 1.54E-02 | 1.94E-01 | 7.77E-03 |Trabecular Bone | 1100 | 0.00E+00
Thymus 0.00E+00 | 1.79E-01 | 2.53E-02 | 2.04E-01 | 1.88E-03 |Spleen 150 | 3.20E+00
Thyroid 0.00E+00 | 1.79E-01 | 2.05E-02 | 1.99E-01 | 7.97E-03 |Testes 35 | 0.00E+00
Urinary Bladder | 0.00E+00 | 1.79E-01 | 2.23E-02 | 2.01E-01 | 8.04E-03 |Thymus 25 | 0.00E+00
Wall
Total Body 0.00E+00 | 2.63E-01 | 2.08E-02 | 2.84E-01 | 0.00E+00 |Thyroid 20 | 0.00E+00
Urinary Bladder | 211 | 0.00E+00
Contents
Effective Dose 3.69E-01 Total Body 73000, 1.53E+02
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The estimates of % Injected Dose(%ID) or TIAC for the liver, kidney, spleen, and lesion/tumor varied
by <9% between the two OLINDA/EXM and MIRDcalc dosimetric software. The highest variability
for TIAC results was observed for the kidneys and liver (approximately 10%) in the seven patients in
the first cycle of post-therapy scans. We also noted that in all seven patient cases, the relative error

(PE oLINDA~] (the gold standard relative percentage error)) approaches the log relative difference
MIRDcalc

(A[OLINDA—] (the logarithmic relative difference metric)) for minimal differences. Relative standard
MIRDcalc

deviations in mean absorbed doses were slightly higher than those observed for TIAC but remained of
the same order of magnitude in both software packages. When applying a similar processing approach,
the results obtained were of the same order of magnitude regardless of the dosimetric software used.
The overall estimated absorbed doses in our study showed a good correlation, but other factors, such as
camera calibration and lesion delineation, also played an important role. However, comparing the
performances of the OLINDA/EXM and MIRDcalc software is still difficult, as they do not address the
same dosimetric analysis system.

Comparative Analysis of MIRDcalc and OLINDA/EXM Dosimetry Software
The TIAC (in units of MBq-h/MBq) in the Organs and OLINDA_ MIRDcalc software comparative
analysis of absorbed dose (in units of mGy/MBq) data of seven patients is shown in Table 2.

Table 2. TIAC (MBg-h/MBq) in organs and 3D OLINDA_ MIRDcalc absorbed dose (mGy/MBq) data
of seven patients.

Pl
Organ TIAC (h) | OLINDA/EXM Dose | MIRD Cale Dose | AjoLiNnpA_MiRDeale] | PE[OLINDA_MIRDealc]
Lesion 15.2 14.5 15 -3.39 -3.33
Liver 455 2.27 1.74 26.59 30.46
Kidney 8.2 2.33 1.72 30.35 3547
Spleen 3.2 1.88 1.24 41.62 51.61
Rest of body 153 0.28 0.285 -1.77 -1.75
Effective dose -- 0.37 0.335 9.94 10.45
P2
Organ TIAC (h) OLINDA Dose MIRDcalc AjoLinpa_MIRDeale] | PE[OLINDA_MIRDealc]
Lesion 10.4 6.11 6.37 -4.17 -4.08
Liver 21.2 1.07 0.821 26.49 30.33
Kidney 6.52 1.86 1.38 29.85 34.78
Spleen 13.2 7.6 5.02 41.47 51.39
Rest of body 173 0.28 0.285 -1.77 -1.75
Effective dose -- 0.36 0.352 2.25 2.27
P3
Lesion 16.2 7.16 7.46 -4.1 -4.02
Liver 66.6 4.22 3.27 252 29.05
Kidney 1.37 0.49 0.395 21.55 24.05
Spleen 11.4 7.6 5.27 36.61 4421
Rest of body 59 0.24 0.24 0 0
Effective dose -- 0.71 0.267 97.8 165.92
P4
Lesion 25.7 8.92 9.28 -3.96 -3.88
Liver 123 7.98 6.18 25.56 29.13
Kidney 0.56 0.26 0.232 11.39 12.07
Spleen 1.24 0.86 0.615 33.53 39.84
Rest of body 76.3 0.36 0.357 0.84 0.84
Effective dose -- 0.49 0.365 29.45 34.25
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P5
Organ TIAC (h) OLINDA Dose MIRDcalc A[OLINDA_MIRDeale] | PE[OLINDA_MIRDcalc]
Lesion 6.35 22.1 23 -3.99 -3.91
Liver 86.6 5.49 4.25 25.6 29.18
Kidney 3.69 1.23 0.971 23.64 26.67
Spleen 5.67 3.79 2.65 35.78 43.02
Rest of body 105 0.32 0.342 -6.65 -6.43
Effective dose -- 0.47 0.351 29.19 339

P6
Lesion 16.7 6.27 6.53 -4.06 -3.98
Liver 73.9 3.66 2.8 26.78 30.71
Kidney 2.37 0.71 0.541 27.18 31.24
Spleen 2.49 1.47 0.97 41.57 51.55
Rest of body 136 0.29 0.297 -2.39 -2.36
Effective dose -- 0.66 0.352 62.86 87.5

P7
Lesion 3.79 4.78 4.97 -3.9 -3.82
Liver 18.4 0.92 0.712 25.63 29.21
Kidney 1.43 0.43 0.325 28 3231
Spleen 1.34 0.79 0.532 39.54 48.5
Rest of body 189 0.27 0.274 -1.47 -1.46
Effective dose -- 0.33 0.306 7.55 7.84

For the radiopharmaceutical Lu-177 DOTATATE, the absorbed dose estimates obtained from
MIRDcalc were compared with those calculated using OLINDA/EXM. Two metrics were used for this
comparison: the logarithmic relative difference and traditional percentage error. The logarithmic
approach was selected owing to its neutrality regarding the reference method, allowing a consistent
magnitude of difference, irrespective of which software was used as the baseline. Overall, the results
demonstrated a close agreement between MIRDcalc and OLINDA/EXM. Minor variations in the
absorbed dose estimates were observed, as reflected by both calculation methods. The effective dose
values derived from MIRDcalc differed slightly from those computed using OLINDA/EXM, with a
reported mean difference of approximately -10% and a standard deviation of 45% for adult patients
(Figures 3 and 4). It was noted that OLINDA/EXM tended to produce slightly higher dose estimates for
critical organs, which may be attributed to its reliance on conservative assumptions used in reference
phantoms and biokinetic models, especially for organs with rapid clearance and higher
radiopharmaceutical uptake. This comparative analysis revealed that both software platforms yielded
consistent dosimetric outcomes for most of the target organs. However, discrepancies in dose values
for certain organs were found, likely due to differences in phantom geometry, organ segmentation, and
interpolation methods used to derive the S-values. MIRDcalc’s use of updated ICRP-based phantom
models and flexible input interfaces appeared to align more closely with patient-specific anatomical
variations, particularly when organ mass, shape, and spacing were considered. Moreover, the variation
in absorbed dose estimates was observed to range from 15% to 49% across the seven patients’ scanned
dataset. This variability is expected because of individual anatomical differences and biokinetic
behaviors that are not fully captured by reference phantoms. Nevertheless, both tools showed improved
concordance when the comparison focused solely on organs that contributed the most to the effective
dose or received the highest radiation exposure. These findings suggest that, while both MIRDcalc and
OLINDA/EXM software are robust and clinically useful tools for dosimetry calculations, attention must
be paid to the specific modeling assumptions and phantom selection in each software. Personalized
dosimetry, supported by imaging-based organ definitions and biodistribution inputs, is likely to benefit
from the adaptable architecture of MIRDcalc.
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Figure 4. (ato g) 3D OLINDA_ MIRDcalc software, comparison of absorbed dose coefficients
analysis (A[OLINDA-MIRDcalc] and PE[OLINDA-MIRDcalc]) (mGy/MBq) data.

DISCUSSION

This study presents absorbed dose estimates specifically for Lu-177 DOTATATE administered to
neuroendocrine tumor (NET) radionuclide therapy patients, using data acquired through SPECT/CT
imaging. A key limitation of internal dosimetry lies in the uncertainty surrounding TIACs, which often
results from the scarcity of accurate biodistribution data for Lu-177 and similar radiopharmaceuticals.
Furthermore, in our evaluation, the TIACs were generated using earlier compartmental pharmacokinetic
models and exponential retention functions, initially designed for use with stylized Cristy-Eckerman
phantoms [30]. Therefore, the dose values provided should primarily be interpreted in a comparative
context, useful for validating software tools, rather than as definitive clinical measures. Recalculation
using contemporary models and updated software tools, such as MIRDcalc, is recommended. Looking
ahead, dosimetric evaluations should be extended to include a wider array of patient-specific organ and
tumor doses, enabling deeper comparisons between MIRDcalc and other dosimetry platforms that
support individualized therapy and theranostic applications. As the field of internal dosimetry continues
to evolve, the availability and sophistication of dosimetry software tools are increasing. However, the
variability among these platforms, often driven by differences in phantom models and dose calculation
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methods, necessitates rigorous comparisons and critical analyses. Most of the discrepancies observed
between software tools stem from how they define and implement the anatomical reference phantoms.
MIRDcalc, for instance, utilizes adult voxel phantoms from ICRP Publication 133 and specific absorbed
fractions (SAFs) derived from ICRP 143, whereas OLINDA/EXM version 2.0 is based on the RADAR
phantom series. These differences can significantly influence dose outcomes. MIRDcalc was developed
to address the growing demand for validated, open-source, and flexible dosimetry solutions that are
freely accessible to the global research and clinical community. MIRDcalc significantly reduces the
complexity and time required for dosimetry calculations and offers a collaborative platform for ongoing
developments. Future enhancements to MIRDcalc are expected to include advanced features, such as
curve-fitting tools, pregnant/fetal phantom modeling, and sub-organ dosimetry. The integration of
updated nuclear decay data with patient-specific imaging makes it a powerful and accessible tool for
personalized dose planning in nuclear medicine.

A comparative study of "Lu-DOTATATA radionuclide therapy on NET patients using
OLIND/EXM and MIRDcalc software provided a piece of wide information in standardizing and
automating internal dose calculations for the existing dosimetry workflow practiced worldwide. The
mathematical and physical methods implemented in the software program algorithm increase the
accuracy of activity quantification and absorbed dose calculations in radionuclide therapies.

CONCLUSION

This study presents a detailed comparison of organ and tumor absorbed radiation doses, as well as
effective doses, estimated using MIRDcalc and OLINDA/EXM software for Lu-177 DOTATATE
radionuclide therapy in NET patients, based on SPECT/CT imaging data. The analysis indicated that
MIRDcalc yields dose estimates that closely align with those from OLINDA/EXM and other dosimetry
tools built on ICRP reference voxel phantoms. In most cases, the dose coefficients calculated using
MIRDcalc were consistent with values derived using alternative reference models. These findings
underscore the growing demand for advanced and updated nuclear emission databases to support the
evolving applications of new radiopharmaceuticals. Although integrating additional features can
enhance software capability, the design of next-generation dosimetry platforms should aim to address
existing gaps, particularly those related to individualization, standardization, and improved biokinetic
modeling. There is also a need for systems that allow user-specific anatomical inputs based on medical
imaging, enabling interpolation between standardized models and refining dose estimation. Going
forward, the MIRDcalc initiative is well-positioned to contribute to this progress by offering open-
access, user-friendly tools tailored for research and educational use. Future developments are expected
to expand its capabilities further, including functionalities such as curve fitting, fetal dosimetry, and
sub-organ level dose calculations. As the field of nuclear medicine advances, incorporating detailed
quantitative imaging with anatomically accurate models is essential for precise patient-specific internal
dosimetry and therapy planning.
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