Prediction of Excitation Current of Synchronous Machines Based on Neural Network Model

Author: Sumanta Dey, Mita Halder, Amit Dey Recent Trends in Electronics & Communication Systems-STM Journals Issn: 2393-8757 Date: 2023-12-01 09:24 Volume: 10 Issue: 01 Keyworde: Synchronous machine, exciting current, neural network, prediction Full Text PDF Submit Manuscript Journals

Abstract

Keyworde: Synchronous machine, exciting current, neural network, prediction

Full Text PDF

Refrences:

  1. Tsai H, Keyhani A, Demcko JA, Selin DA. Development of a neural network based saturation model for synchronous generator analysis. IEEE Trans Energy Convers. 1995; 10(4): 617–624.
  2. Kaplan O, Elik E. Simplified model and genetic algorithm based simulated annealing approach for excitation current estimation of synchronous motor. Adv Electr Comput Eng. 2018; 18(4): 75–84.
  3. Sun X, Chen L, Jiang H, Yang Z, Chen J, Zhang W. High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers. IEEE Trans Ind Electron. 2016; 63(6): 3479–3488.
  4. Glučina M, Anđelić N, Lorencin I, Car Z. Estimation of Excitation Current of a Synchronous Machine Using Machine Learning Methods. Computers. 2022; 12(1): 1.
  5. Bayindir R, Colak I, Sagiroglu S, Kahraman HT. Application of adaptive artificial neural network method to model the excitation currents of synchronous motors. In 2012 IEEE 11th International Conference on Machine Learning and Applications. 2012 Dec; 2: 498–502.
  6. Ebrahimi BM, Roshtkhari MJ, Faiz J, Khatami SV. Advanced eccentricity fault recognition in permanent magnet synchronous motors using stator current signature analysis. IEEE Trans Ind Electron. 2013; 61(4): 2041–2052.
  7. Kahraman HT, Bayindir RAMAZAN, Sagiroglu S. A new approach to predict the excitation current and parameter weightings of synchronous machines based on genetic algorithm-based k-NN estimator. Energy Convers Manag. 2012; 64: 129–138.
  8. Tsai H, Keyhani A, Demcko JA, Selin DA. Development of a neural network-based saturation model for synchronous generator analysis. IEEE Trans Energy Convers. 1995; 10(4): 617–624.
  9. Del Angel A, Geurts P, Ernst D, Glavic M, Wehenkel L. Estimation of rotor angles of synchronous machines using artificial neural networks and local PMU-based quantities. Neurocomputing. 2007; 70(16–18): 2668–2678.
  10. Guo H, Ding Q, Song Y, Tang H, Wang L, Zhao J. Predicting temperature of permanent magnet synchronous motor based on deep neural network. Energies. 2020; 13(18): 4782.
  11. Chow MY, Thomas RJ. Neural network synchronous machine modeling. In IEEE International Symposium on Circuits and Systems. 1989 May; 495–498.
  12. Pillutla S, Keyhani A, Kamwa I. Neural network observers for on-line tracking of synchronous generator parameters. IEEE Trans Energy Convers. 1999; 14(1): 23–30.
  13. Kron G. Equivalent Circuits of Electric Machinery. New York, NY, USA: Wiley; 1951.
  14. Traxler-Samek G, Zickermann R, Schwery A. Cooling airflow, losses, and temperatures in large air-cooled synchronous machines. IEEE Trans Ind Electron. 2009; 57(1): 172–180. [CrossRef]
  15. Dong Z, Weili L, Feng Z, Yunpeng H. Numerical calculation of air gap magnetic field of a salient synchronous generator with the consideration of the effect of turn insulation. In Proceedings of the International Conference on Power System Technology, Kunming, China. 2002 Oct 13–17; 2: 774–778.
  16. Fernandez D, Hyun D, Park Y, Reigosa DD, Lee SB, Lee DM, Briz F. Permanent magnet temperature estimation in PM synchronous motors using low-cost hall effect sensors. IEEE Trans Ind Appl. 2017; 53(5): 4515–4525. [CrossRef]
  17. Sonmez Y, Guvenc U, Kahraman HT, Yilmaz C. A comparative study on novel machine learning algorithms for estimation of energy performance of residential buildings. In 2015 IEEE 3rd International Istanbul Smart Grid Congress and Fair (ICSG). 2015 Apr; 1–7.
If-Else Example
>